import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import set_matplotlib_hangul
import warnings
warnings.filterwarnings(action="ignore")
%matplotlib inline
population = pd.read_excel('../data/07_population_raw_data.xlsx', header=1)
population.fillna(method='pad', inplace=True) # 병합된 곳 -> NaN 값 존재해서 fillna
# 컬럼 이름 변경
population.rename(
columns={
"행정구역(동읍면)별(1)":"광역시도",
"행정구역(동읍면)별(2)":"시도",
"계":"인구수",
}, inplace=True
)
# 소계 제거
population = population[population["시도"] != "소계"]
population.is_copy = False # copy시 warning 표시 x
population.rename(
columns={"항목":"구분"}, inplace=True
)
#[행, 열]
population.loc[population["구분"] == "총인구수 (명)", "구분"] = "합계"
population.loc[population["구분"] == "남자인구수 (명)", "구분"] = "남자"
population.loc[population["구분"] == "여자인구수 (명)", "구분"] = "여자"
# 소멸지역 조사하기 위한 데이터
population["20-39세"] = (
population["20 - 24세"] + population["25 - 29세"]+ population["30 - 34세"]+ population["35 - 39세"]
)
population["65세이상"] = (
population["65 - 69세"] + population["70 - 74세"]+ population["75 - 79세"]+ population["80 - 84세"]+ population["85 - 89세"]+ population["90 - 94세"]+ population["95 - 99세"]+ population["100+"]
)
population.head()
# 인덱스만 지정하면 보통 평균, values 지정하면 그 값
pop = pd.pivot_table(
data=population,
index=["광역시도", "시도"],
columns=["구분"],
values=["인구수", "20-39세", "65세이상"]
)
# 소멸비율
pop["소멸비율"] = pop["20-39세", "여자"] / (pop["65세이상", "합계"]/2)
# 소멸위기지역 컬럼
pop["소멸위기지역"] = pop["소멸비율"] < 1.0
pop.reset_index(inplace=True)
# MultiIndex 정리
# len(pop.columns.get_level_values(0)) -> 컬럼의 길이만큼
tmp_columns = [
pop.columns.get_level_values(0)[n] + pop.columns.get_level_values(1)[n]
for n in range(0, len(pop.columns.get_level_values(0)))
]
pop.columns = tmp_columns
pop.head()
si_name = [None] * len(pop)
pop["광역시도"].unique()
pop["시도"].unique()
for idx, row in pop.iterrows():
# 마지막 3글자 != "광역시", "특별시", "자치시"
if row["광역시도"][-3:] not in ["광역시", "특별시", "자치시"]:
# 임실군 -> 임실
si_name[idx] = row["시도"][:-1]
elif row["광역시도"] == "세종특별자치시":
si_name[idx] = "세종"
else:
# 서울특별시 중구 -> 서울 중구
if len(row["시도"]) == 2:
si_name[idx] = row["광역시도"][:2] + " " + row["시도"]
else:
# 서울특별시 경산시 -> 서울 경산
si_name[idx] = row["광역시도"][:2] + " " + row["시도"][:-1]
tmp_gu_dict = {
"수원": ["장안구", "권선구", "팔달구", "영통구"],
"성남": ["수정구", "중원구", "분당구"],
"안양": ["만안구", "동안구"],
"안산": ["상록구", "단원구"],
"고양": ["덕양구", "일산동구", "일산서구"],
"용인": ["처인구","기흥구", "수지구"],
"청주": ["상당구", "서원구", "흥덕구", "청원구"],
"천안": ["동남구", "서북구"],
"전주": ["완산구", "덕진구"],
"포항": ["남구", "북구"],
"창원": ["의창구", "성산구", "진해구", "마산합포구", "마산회원구"],
"부천": ["오정구", "원미구", "소사구"]
}
for idx, row in pop.iterrows():
if row["광역시도"][-3:] not in ["광역시", "특별시", "자치시"]:
for keys, values in tmp_gu_dict.items():
if row["시도"] in values:
# 2글자 그대로 표출
if len(row["시도"]) == 2:
si_name[idx] = keys + " " + row["시도"]
# 마산합포구, 마산회원구만 -> 합포, 회원
elif row["시도"] in ["마산합포구", "마산회원구"]:
si_name[idx] = keys + " " + row["시도"][2:-1]
else:
si_name[idx] = keys + " " + row["시도"][:-1]
for idx, row in pop.iterrows():
if row["광역시도"][-3:] not in ["광역시", "특별시", "자치시"]:
if row["시도"][:-1] == "고성" and row["광역시도"] == "강원도":
si_name[idx] = "고성(강원)"
elif row["시도"][:-1] == "고성" and row["광역시도"] == "경상남도":
si_name[idx] = "고성(경남)"
pop["ID"] = si_name
del pop["20-39세남자"]
del pop["65세이상남자"]
del pop["65세이상여자"]
pop.head()
draw_korea_raw = pd.read_excel("../data/07_draw_korea_raw.xlsx")
draw_korea_raw_stacked = pd.DataFrame(draw_korea_raw.stack())
draw_korea_raw_stacked.reset_index(inplace=True)
draw_korea_raw_stacked.rename(
columns={
"level_0": "y",
"level_1": "x",
0:"ID"
}, inplace=True
)
draw_korea = draw_korea_raw_stacked
BORDER_LINES = [
[(5, 1), (5, 2), (7, 2), (7, 3),(11, 3), (11, 0)],#인천
[(5, 4), (5, 5), (2, 5), (2, 7), (4, 7), (4, 9), (7, 9), (7, 7), (9, 7), (9, 5), (10, 5), (10, 4), (5, 4)], #서울
[(1, 7), (1,8), (3,8), (3,10), (10,10), (10,7), (12,7), (12,6), (11,6), (11,5), (12,5), (12, 4), (11, 4), (11, 3)],# 경기도
[(8, 10), (8, 11), (6, 11), (6, 12)],#강원도
[(12,5), (13,5), (13, 4), (14, 4), (14, 5), (15, 5), (15, 4), (16, 4), (16, 2)], #충청북도
[(16, 4), (17,4), (17,5), (16,5), (16,6), (19,6), (19,5), (20,5), (20, 4), (21, 4), (21,3), (19, 3), (19, 1)], #전라북도
#대전시, 세종시
[(13, 5), (13, 6), (16, 6)],
[(13,5), (14,5)],
[(21,2), (21,3), (22, 3), (22, 4), (24, 4), (24, 2), (21, 2)], # 광주
[(20,5), (21, 5), (21, 6), (23, 6)], # 전라남도
[(10, 8), (12, 8), (12, 9), (14, 9), (14, 8), (16, 8), (16, 6)], # 충청북도
[(14,9), (14, 11), (14, 12), (13, 12), (13, 13)], #경상북도
[(15, 8), (17, 8), (17, 10), (16, 10), (16, 11), (14, 11)], #대구
[(17, 9), (18, 9), (18, 8), (19, 8), (19, 9), (20, 9), (20, 10), (21, 10)], #부산
[(16, 11), (16, 13)],
[(27, 5), (27, 6), (25, 6)]
]
set(draw_korea["ID"].unique()) - set(pop["ID"].unique())
# set()
set(pop["ID"].unique()) - set(draw_korea["ID"].unique())
# {'고양', '부천', '성남', '수원', '안산', '안양', '용인', '전주', '창원', '천안', '청주', '포항'}
tmp_list = list(set(pop["ID"].unique()) - set(draw_korea["ID"].unique()))
for tmp in tmp_list:
pop = pop.drop(pop[pop["ID"] == tmp].index)
print(set(pop["ID"].unique()) - set(draw_korea["ID"].unique()))
# set()
pop = pd.merge(pop, draw_korea, how="left", on="ID")
pop.head()
def get_data_info(targetData, blockedMap):
whitelabelmin = (
max(blockedMap[targetData]) - min(blockedMap[targetData])
) * 0.25 + min(blockedMap[targetData])
vmin = min(blockedMap[targetData])
vmax = max(blockedMap[targetData])
mapdata = blockedMap.pivot_table(index="y", columns="x", values=targetData)
return mapdata, vmax, vmin, whitelabelmin
def get_data_info_zero_center(targetData, blockedMap):
whitelabelmin = 5
tmp_max = max(
[np.abs(min(blockedMap[targetData])), np.abs(max(blockedMap[targetData]))]
)
vmin, vmax = -tmp_max, tmp_max
mapdata = blockedMap.pivot_table(index="y", columns="x", values=targetData)
return mapdata, vmax, vmin, whitelabelmin
def plot_text(targetData, blockedMap, whitelabelmin):
for idx, row in blockedMap.iterrows():
if len(row["ID"].split()) == 2:
dispname = "{}\n{}".format(row["ID"].split()[0], row["ID"].split()[1])
elif row["ID"][:2] == "고성":
dispname = "고성"
else:
dispname = row["ID"]
if len(dispname.splitlines()[-1]) >= 3:
fontsize, linespacing = 9.5, 1.5
else:
fontsize, linespacing = 11, 1.2
annocolor = "white" if np.abs(row[targetData]) > whitelabelmin else "black"
plt.annotate(
dispname,
(row["x"] + 0.5, row["y"] + 0.5),
weight="bold",
color= annocolor,
fontsize=fontsize,
linespacing=linespacing,
ha = "center", #수평정렬
va= "center" #수직정렬
) # 주석 기능
def drawKorea(targetData, blockedMap, cmapname, zeroCenter=False):
if zeroCenter:
masked_mapdata, vmax, vmin, whitelabelmin = get_data_info_zero_center(targetData, blockedMap)
if not zeroCenter:
masked_mapdata, vmax, vmin, whitelabelmin = get_data_info(targetData, blockedMap)
plt.figure(figsize=(8, 11))
plt.pcolor(masked_mapdata, vmin=vmin, vmax=vmax, cmap=cmapname, edgecolor="#aaaaaa", linewidth=0.5)
plot_text(targetData, blockedMap, whitelabelmin)
for path in BORDER_LINES:
ys, xs = zip(*path)
plt.plot(xs, ys, c="black", lw=1.5)
plt.gca().invert_yaxis() #뒤집어져서 돌리기
plt.axis("off")
plt.tight_layout()
cb = plt.colorbar(shrink=0.1, aspect=10)
cb.set_label(targetData)
plt.show()
pop["소멸위기지역"] = [1 if con else 0 for con in pop["소멸위기지역"]]
drawKorea("소멸위기지역", pop, "Reds")
pop["여성비"] = (pop["인구수여자"] / pop["인구수합계"] - 0.5) * 100
drawKorea("여성비", pop, "RdBu", zeroCenter=True)
import folium
import json
pop_folim = pop.set_index("ID")
pop_folim.head()
geo_path="../data/07_skorea_municipalities_geo_simple.json"
geo_str = json.load(open(geo_path, encoding="utf-8"))
mymap = folium.Map(location=[36.2002, 127.054], zoom_start=7)
mymap.choropleth(
geo_data=geo_str,
data=pop_folim["인구수합계"],
key_on="feature.id",
columns=[pop_folim.index, pop_folim["인구수합계"]],
fill_color="YlGnBu"
)
mymap
mymap = folium.Map(location=[36.2002, 127.054], zoom_start=7)
mymap.choropleth(
geo_data=geo_str,
data=pop_folim["소멸위기지역"],
key_on="feature.id",
columns=[pop_folim.index, pop_folim["소멸위기지역"]],
fill_color="PuRd"
)
mymap
datas = {
"A":np.random.randint(1, 45, 8),
"B":np.random.randint(1, 45, 8),
"C":np.random.randint(1, 45, 8),
}
fillna_df = pd.DataFrame(datas)
fillna_df.loc[2:4, ["A"]] = np.nan
fillna_df.loc[3:5, ["B"]] = np.nan
fillna_df.loc[4:7, ["C"]] = np.nan
fillna_df
# fillna_df.fillna(value=0) # 기본
fillna_df.fillna(method='pad') # 앞의 값을 가져와서 데이터를 채워줌
fillna_df.fillna(method='pad', axis=0) # 가로축
Referece
1) 제로베이스 데이터스쿨 강의자료