๐Ÿ”ด Lecture 03. | Loss Functions and Optimization

๋ฐฑ๊ฑดยท2022๋…„ 1์›” 21์ผ
0

Stanford University CS231n.ย 

๋ชฉ๋ก ๋ณด๊ธฐ
1/6

๋ณธ ๊ธ€์€ Hierachical Structure์˜ ๊ธ€์“ฐ๊ธฐ ๋ฐฉ์‹์œผ๋กœ, ๊ธ€์˜ ์ „์ฒด์ ์ธ ๋งฅ๋ฝ์„ ํŒŒ์•…ํ•˜๊ธฐ ์‰ฝ๋„๋ก ์ž‘์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
๋˜ํ•œ ๋ณธ ๊ธ€์€ CSF(Curation Service for Facilitation)๋กœ ์ธ์šฉ๋œ(์ฐธ์กฐ๋œ) ๋ชจ๋“  ์ถœ์ฒ˜๋Š” ์ƒ๋žตํ•ฉ๋‹ˆ๋‹ค.

[์š”์•ฝ์ •๋ฆฌ]Stanford University CS231n. Lecture 03. | Loss Functions and Optimization

1. CONTENTS


1.1 Table

VelogLectureDescriptionVideoSlidePages
์ž‘์„ฑ์ค‘Lecture01Introduction to Convolutional Neural Networks for Visual Recognitionvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture02Image Classificationvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture03Loss Functions and Optimizationvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture04Introduction to Neural Networksvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture05Convolutional Neural Networksvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture06Training Neural Networks Ivideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture07Training Neural Networks IIvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture08Deep Learning Softwarevideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture09CNN Architecturesvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture10Recurrent Neural Networksvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture11Detection and Segmentationvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture12Visualizing and Understandingvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture13Generative Modelsvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture14Deep Reinforcement Learningvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture15Invited Talk: Song Han Efficient Methods and Hardware for Deep Learningvideoslidesubtitle
์ž‘์„ฑ์ค‘Lecture16Invited Talk: Ian Goodfellow Adversarial Examples and Adversarial Trainingvideoslidesubtitle

1.2 ์ฐธ๊ณ  ๋ฌธ์„œ

profile
๋งˆ์ผ€ํŒ…์„ ์œ„ํ•œ ์ธ๊ณต์ง€๋Šฅ ์„ค๊ณ„์™€ ์Šคํƒ€ํŠธ์—… Log

0๊ฐœ์˜ ๋Œ“๊ธ€