Contrastive Learning for Sequential Recommendation(2022, ICDE)
논문
코드
참고자료
문제의식
- Sequential RS suffer from the data sparsity
아이디어
- inspired by recent advances of contrastive learning,
propose a multi-task model
- traditional next item prediction task
- contrastive learning framework
- extract more meaningful patterns and encode the representation effectively
모델 구조
- Original sequence s → augmentation sa
- (3가지 방법) item crop, item mask, item reorder
- encoder : share parameters
- Contrastive Loss : Considering mini-batch (N users → 2N sa)