SSD baseline III

매일 공부(ML)·2022년 1월 11일
0

Deep Toy project

목록 보기
23/26
post-custom-banner

모델 학습- Train

  • Learning rate scheduler

    • 초기 시점에 WarmUP에 도입해서 lr이 천천히 증가(PiecewiseConstantWarmUpDecay)
class PiecewiseConstantWarmUpDecay(tf.keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self, boundaries, values, warmup_steps, min_lr, name=None):
        super(PiecewiseConstantWarmUpDecay, self).__init__()

        if len(boundaries) != len(values) - 1:
            raise ValueError(
                    "The length of boundaries should be 1 less than the"
                    "length of values")

        self.boundaries = boundaries
        self.values = values
        self.name = name
        self.warmup_steps = warmup_steps
        self.min_lr = min_lr

    def __call__(self, step):
        with tf.name_scope(self.name or "PiecewiseConstantWarmUp"):
            step = tf.cast(tf.convert_to_tensor(step), tf.float32)
            pred_fn_pairs = []
            warmup_steps = self.warmup_steps
            boundaries = self.boundaries
            values = self.values
            min_lr = self.min_lr

            pred_fn_pairs.append(
                (step <= warmup_steps,
                 lambda: min_lr + step * (values[0] - min_lr) / warmup_steps))
            pred_fn_pairs.append(
                (tf.logical_and(step <= boundaries[0],
                                step > warmup_steps),
                 lambda: tf.constant(values[0])))
            pred_fn_pairs.append(
                (step > boundaries[-1], lambda: tf.constant(values[-1])))

            for low, high, v in zip(boundaries[:-1], boundaries[1:],
                                    values[1:-1]):
                pred = (step > low) & (step <= high)
                pred_fn_pairs.append((pred, lambda: tf.constant(v)))

            return tf.case(pred_fn_pairs, lambda: tf.constant(values[0]),
                           exclusive=True)

  • Hard negative mining

    • Object detection 모델 학습
    • 학습 중, label은 negative
    • confidence가 높게 나오는 샘플 재학습
    • false negative오류가 강해짐
    • loss만 따로 모아 계산해주는 방식
def hard_negative_mining(loss, class_truth, neg_ratio):
    pos_idx = class_truth > 0
    num_pos = tf.math.reduce_sum(tf.cast(pos_idx, tf.int32), axis=1)
    num_neg = num_pos * neg_ratio

    rank = tf.argsort(loss, axis=1, direction='DESCENDING')
    rank = tf.argsort(rank, axis=1)
    neg_idx = rank < tf.expand_dims(num_neg, 1)

    return pos_idx, neg_idx

print('슝=3')

Training

priors = prior_box()
train_dataset = load_dataset(priors, train=True)

print('슝=3')


model = SsdModel()
model.summary()
tf.keras.utils.plot_model(
    model, 
    to_file=os.path.join(os.getcwd(), 'model.png'),
    show_shapes=True, 
    show_layer_names=True
)

사실 100으로 좋은 성능이 나오고 그렇지 않으면 크게 유의미한 결과를 얻진 못할 것입니다.

EPOCHS = 10

for epoch in range(0, EPOCHS):
    for step, (inputs, labels) in enumerate(train_dataset.take(steps_per_epoch)):
        load_t0 = time.time()
        total_loss, losses = train_step(inputs, labels)
        load_t1 = time.time()
        batch_time = load_t1 - load_t0
        print(f"\rEpoch: {epoch + 1}/{EPOCHS} | Batch {step + 1}/{steps_per_epoch} | Batch time {batch_time:.3f} || Loss: {total_loss:.6f} | loc loss:{losses['loc']:.6f} | class loss:{losses['class']:.6f} ",end = '',flush=True)

    filepath = os.path.join(CHECKPOINT_PATH, f'weights_epoch_{(epoch + 1):03d}.h5')
    model.save_weights(filepath)

Inference -NMS-

Grid cell을 사용하는 Object detection의 inference 단계에서 하나의 object가 여러 개의 prior box에 걸쳐져 있을 때 가장 확률이 높은 1개의 prior box를 하나로 줄여주는 NMS(non-max suppression)이 필요합니다. 아래 코드를 확인해 주세요.


NMS를 통해 겹쳐진 box를 하나로 줄일 수 있게 되었다면, 이제 모델의 예측 결과를 해석해주는 함수를 작성합니다.

아래 함수에서는 모델의 예측 결과를 디코딩해서 예측 확률을 토대로 NMS를 통해 최종 box와 score 결과를 만들어 줍니다.

def parse_predict(predictions, priors):
    label_classes = IMAGE_LABELS

    bbox_predictions, confidences = tf.split(predictions[0], [4, -1], axis=-1)
    boxes = decode_bbox_tf(bbox_predictions, priors)

    scores = tf.math.softmax(confidences, axis=-1)

    out_boxes = []
    out_labels = []
    out_scores = []

    for c in range(1, len(label_classes)):
        cls_scores = scores[:, c]

        score_idx = cls_scores > 0.5

        cls_boxes = boxes[score_idx]
        cls_scores = cls_scores[score_idx]

        nms_idx = compute_nms(cls_boxes, cls_scores)

        cls_boxes = tf.gather(cls_boxes, nms_idx)
        cls_scores = tf.gather(cls_scores, nms_idx)

        cls_labels = [c] * cls_boxes.shape[0]

        out_boxes.append(cls_boxes)
        out_labels.extend(cls_labels)
        out_scores.append(cls_scores)

    out_boxes = tf.concat(out_boxes, axis=0)
    out_scores = tf.concat(out_scores, axis=0)

    boxes = tf.clip_by_value(out_boxes, 0.0, 1.0).numpy()
    classes = np.array(out_labels)
    scores = out_scores.numpy()

    return boxes, classes, scores

print('슝=3')

Inference - 사진에서 얼굴 찾기-

TEST_IMAGE_PATH = os.path.join(PROJECT_PATH, 'image.jpg')

img_raw = cv2.imread(TEST_IMAGE_PATH)
img_raw = cv2.resize(img_raw, (IMAGE_WIDTH, IMAGE_HEIGHT))
img = np.float32(img_raw.copy())

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img, pad_params = pad_input_image(img, max_steps=max(PRIOR_STEPS))
img = img / 255.0

priors = prior_box()
priors = tf.cast(priors, tf.float32)

predictions = model.predict(img[np.newaxis, ...])

boxes, labels, scores = parse_predict(predictions, priors)
boxes = recover_pad(boxes, pad_params)

for prior_index in range(len(boxes)):
    draw_box_on_face(img_raw, boxes, labels, scores, prior_index, IMAGE_LABELS)

plt.imshow(cv2.cvtColor(img_raw, cv2.COLOR_BGR2RGB))
plt.show()

profile
성장을 도울 아카이빙 블로그
post-custom-banner

0개의 댓글