import os.path as osp
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.transforms as T
import torch_geometric
from torch_geometric.datasets import Planetoid, TUDataset
from torch_geometric.data import DataLoader
from torch_geometric.nn.inits import uniform
from torch.nn import Parameter as Param
from torch import Tensor
torch.manual_seed(42)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from torch_geometric.nn.conv import MessagePassing
dataset = 'Cora'
transform = T.Compose([
T.RandomNodeSplit('train_rest', num_val=500, num_test=500),
T.TargetIndegree(),
])
path = osp.join('data', dataset)
dataset = Planetoid(path, dataset, transform=transform)
data = dataset[0]
print(dataset)
print(len(dataset))
print(dataset.num_classes)
print(dataset.num_node_features)
print(data)
print()
print(data.is_undirected())
print()
print(data.train_mask.sum().item())
print()
print(data.val_mask.sum().item())
print()
print(data.test_mask.sum().item())
class MLP(nn.Module):
def __init__(self, input_dim, hid_dims, out_dim):
super(MLP, self).__init__()
self.mlp = nn.Sequential()
dims = [input_dim] + hid_dims + [out_dim]
for i in range(len(dims)-1):
self.mlp.add_module('lay_{}'.format(i),nn.Linear(in_features=dims[i], out_features=dims[i+1]))
if i+2 < len(dims):
self.mlp.add_module('act_{}'.format(i), nn.Tanh())
def reset_parameters(self):
for i, l in enumerate(self.mlp):
if type(l) == nn.Linear:
nn.init.xavier_normal_(l.weight)
def forward(self, x):
return self.mlp(x)
class GatedGraphConv(MessagePassing):
def __init__(self, out_channels, num_layers, aggr = 'add',
bias = True, **kwargs):
super(GatedGraphConv, self).__init__(aggr=aggr, **kwargs)
self.out_channels = out_channels
self.num_layers = num_layers
self.weight = Param(Tensor(num_layers, out_channels, out_channels))
self.rnn = torch.nn.GRUCell(out_channels, out_channels, bias=bias)
self.reset_parameters()
def reset_parameters(self):
uniform(self.out_channels, self.weight)
self.rnn.reset_parameters()
def forward(self, data):
""""""
data= data.to(device)
x = data.x
edge_index = data.edge_index
edge_weight = data.edge_attr
if x.size(-1) > self.out_channels:
raise ValueError('The number of input channels is not allowed to '
'be larger than the number of output channels')
if x.size(-1) < self.out_channels:
zero = x.new_zeros(x.size(0), self.out_channels - x.size(-1))
x = torch.cat([x, zero], dim=1)
for i in range(self.num_layers):
m = torch.matmul(x, self.weight[i])
m = self.propagate(edge_index, x=m, edge_weight=edge_weight,
size=None)
x = self.rnn(m, x)
return x
def message(self, x_j, edge_weight):
return x_j if edge_weight is None else edge_weight.view(-1, 1) * x_j
def message_and_aggregate(self, adj_t, x):
return matmul(adj_t, x, reduce=self.aggr)
def __repr__(self):
return '{}({}, num_layers={})'.format(self.__class__.__name__,
self.out_channels,
self.num_layers)
class GGNN(torch.nn.Module):
def __init__(self):
super(GGNN, self).__init__()
self.conv = GatedGraphConv(1433, 3).to(device)
self.mlp = MLP(1433, [32,32,32], dataset.num_classes).to(device)
def forward(self):
x = self.conv(data)
x = self.mlp(x)
return F.log_softmax(x, dim=-1)
model = GGNN().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
test_dataset = dataset[:len(dataset) // 10]
train_dataset = dataset[len(dataset) // 10:]
test_loader = DataLoader(test_dataset)
train_loader = DataLoader(train_dataset)
def train():
model.train()
optimizer.zero_grad()
data.train_mask = data.train_mask.to(device)
criterion(model()[data.train_mask], data.y[data.train_mask]).backward()
optimizer.step()
def test():
model.eval()
logits, accs = model(), []
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
return accs
for epoch in range(1, 51):
train()
accs = test()
train_acc = accs[0]
val_acc = accs[1]
test_acc = accs[2]
print('Epoch: {:03d}, Train Acc: {:.5f}, '
'Val Acc: {:.5f}, Test Acc: {:.5f}'.format(epoch, train_acc,
val_acc, test_acc))
결과
Epoch: 001, Train Acc: 0.27143, Val Acc: 0.15800, Test Acc: 0.15400
Epoch: 002, Train Acc: 0.35000, Val Acc: 0.22200, Test Acc: 0.22200
Epoch: 003, Train Acc: 0.18571, Val Acc: 0.22400, Test Acc: 0.21000
Epoch: 004, Train Acc: 0.32857, Val Acc: 0.29600, Test Acc: 0.28300
Epoch: 005, Train Acc: 0.36429, Val Acc: 0.25000, Test Acc: 0.26700
Epoch: 006, Train Acc: 0.45000, Val Acc: 0.35000, Test Acc: 0.37200
Epoch: 007, Train Acc: 0.54286, Val Acc: 0.45800, Test Acc: 0.47100
Epoch: 008, Train Acc: 0.53571, Val Acc: 0.40800, Test Acc: 0.43000
Epoch: 009, Train Acc: 0.60000, Val Acc: 0.51000, Test Acc: 0.50700
Epoch: 010, Train Acc: 0.64286, Val Acc: 0.58800, Test Acc: 0.57500
Epoch: 011, Train Acc: 0.62143, Val Acc: 0.57600, Test Acc: 0.57700
Epoch: 012, Train Acc: 0.63571, Val Acc: 0.54000, Test Acc: 0.55100
Epoch: 013, Train Acc: 0.65714, Val Acc: 0.55000, Test Acc: 0.55200
Epoch: 014, Train Acc: 0.67143, Val Acc: 0.59200, Test Acc: 0.57100
Epoch: 015, Train Acc: 0.70714, Val Acc: 0.60800, Test Acc: 0.58400
Epoch: 016, Train Acc: 0.73571, Val Acc: 0.62400, Test Acc: 0.60400
Epoch: 017, Train Acc: 0.74286, Val Acc: 0.61200, Test Acc: 0.58800
Epoch: 018, Train Acc: 0.69286, Val Acc: 0.57000, Test Acc: 0.55700
Epoch: 019, Train Acc: 0.70714, Val Acc: 0.59400, Test Acc: 0.58700
Epoch: 020, Train Acc: 0.74286, Val Acc: 0.59600, Test Acc: 0.60400
Epoch: 021, Train Acc: 0.72143, Val Acc: 0.58600, Test Acc: 0.59000
Epoch: 022, Train Acc: 0.71429, Val Acc: 0.57800, Test Acc: 0.56200
Epoch: 023, Train Acc: 0.72857, Val Acc: 0.56800, Test Acc: 0.55000
Epoch: 024, Train Acc: 0.74286, Val Acc: 0.58200, Test Acc: 0.57100
Epoch: 025, Train Acc: 0.82143, Val Acc: 0.59600, Test Acc: 0.61300
Epoch: 026, Train Acc: 0.83571, Val Acc: 0.58800, Test Acc: 0.59400
Epoch: 027, Train Acc: 0.83571, Val Acc: 0.57800, Test Acc: 0.58000
Epoch: 028, Train Acc: 0.83571, Val Acc: 0.58000, Test Acc: 0.57600
Epoch: 029, Train Acc: 0.82143, Val Acc: 0.57800, Test Acc: 0.58200
Epoch: 030, Train Acc: 0.82857, Val Acc: 0.58600, Test Acc: 0.58000
Epoch: 031, Train Acc: 0.83571, Val Acc: 0.59200, Test Acc: 0.58500
Epoch: 032, Train Acc: 0.86429, Val Acc: 0.61000, Test Acc: 0.59800
Epoch: 033, Train Acc: 0.94286, Val Acc: 0.62000, Test Acc: 0.62400
Epoch: 034, Train Acc: 0.95714, Val Acc: 0.62400, Test Acc: 0.62800
Epoch: 035, Train Acc: 0.97143, Val Acc: 0.62200, Test Acc: 0.63600
Epoch: 036, Train Acc: 0.97857, Val Acc: 0.61400, Test Acc: 0.63400
Epoch: 037, Train Acc: 0.98571, Val Acc: 0.61200, Test Acc: 0.63700
Epoch: 038, Train Acc: 0.98571, Val Acc: 0.61000, Test Acc: 0.64200
Epoch: 039, Train Acc: 0.98571, Val Acc: 0.61200, Test Acc: 0.63400
Epoch: 040, Train Acc: 0.98571, Val Acc: 0.61800, Test Acc: 0.63200
Epoch: 041, Train Acc: 0.98571, Val Acc: 0.61600, Test Acc: 0.63400
Epoch: 042, Train Acc: 0.98571, Val Acc: 0.61000, Test Acc: 0.63300
Epoch: 043, Train Acc: 0.98571, Val Acc: 0.60800, Test Acc: 0.63300
Epoch: 044, Train Acc: 0.98571, Val Acc: 0.60800, Test Acc: 0.63300
Epoch: 045, Train Acc: 0.98571, Val Acc: 0.60600, Test Acc: 0.62900
Epoch: 046, Train Acc: 0.98571, Val Acc: 0.60200, Test Acc: 0.63000
Epoch: 047, Train Acc: 0.98571, Val Acc: 0.60200, Test Acc: 0.63100
Epoch: 048, Train Acc: 0.98571, Val Acc: 0.60400, Test Acc: 0.63300
Epoch: 049, Train Acc: 0.98571, Val Acc: 0.60400, Test Acc: 0.63300
Epoch: 050, Train Acc: 0.99286, Val Acc: 0.60400, Test Acc: 0.62800