자연어 이해는 다양한 task를 포함한다.라벨링되지 않은 데이터는 충분한 반면, 특정 task에 맞게 라벨링된 데이터는 매우 부족하다.그래서 이를 모델이 충분히 성능이 나오도록 학습하는 것이 어렵다.라벨링 되지 않은 corpus에 대한 언어 모델의 생성적(generat
BERT는 모든 계층에서 왼쪽, 오른쪽 문맥의 unlabeled text로 부터 깊은 양방향 표현법을 사전 학습하기 위해 설계되었다.사전 학습된 BERT 모델은 추가적인 1개의 output layer만 추가하여 fine-tuning되고 넓은 범위의 task에서 SOTA
자연어 이해는 넓은 범위의 다양한 task들을 보장했다.textual entailment, QA, 의미 유사도 평가, 문서 분류비록 라벨링 되지 않은 copus들은 많지만 라벨링된 특정 task의 데이터는 충분히 모델의 성능을 높이기에 부족하다.라벨링되지 않은 다양한
Text 데이터를 분석하고 모델링하는 분야NLU + NLG자연어 이해(NLU; Natural Language Understanding): 자연어를 이해하는 영역자연어 생성(NLG; Natural Language Generation): 자연어를 생성하는 영역NLP 과정T