AWS MLS 후기

문학적인유사성·2023년 12월 4일
0

Certification

목록 보기
10/16
post-thumbnail

머신러닝 스페셜티 후기글 스타트!

대학교때 이론만 찍어 먹어봐서, 진짜로 어떻게 쓰나 공부해보려고 시작해봤다. 또한, 여러가지 해보면서, 나한테 맞는거 찾아가는 중이라고 생각하다보니 이 모든게 쓸모있다고 생각하는 중이다. 언젠간 쓰겠지~

시험에 파이썬 코드를 짜거나, 이해하라는 내용은 나오지않는다. 알고리즘의 딥한 부분도 묻지않는다.

AWS의 구성요소를 어떻게 쓸꺼냐 묻는 시험인거같다. 어떤 상황에 어떤 알고리즘을 쓰고, 데이터를 어떻게 모을 것이며, 어떤 아키가 좋은가, 어떻게 최적화/튜닝 하냐 정도의 내용이 들어가있다.

근데 뭐... 코드도 조금 보면서 워크샵따라하면서 인강도 보면서 공부를 했다.

이번에 느낀점은 뭐랄까... 수학과 영어를 포기하지않아 다행이다... 라고 생각중이다..^^;; 수학 개념이 여기저기 많이 나와서, 인도인들의 도움을 많이 받았다... 유튜브 인도 선생님들 정말 감사합니다.. 머신러닝 관련 도서도 읽어놓은게 도움이 많이 된듯.


공부순서

  1. 혼자 공부하는 머신러닝 + 딥러닝 책 정독 및 코드 분석 및 워크샵 똑같이 따라하기 ( 나는 기억 살리는 용도로 정독하면서 따라했다. 시험에 코드 문제가 없으니, 스킵하셔도 됨!)
  2. MLS 공부 범위 확인 + 관련 서비스 FAQ 정독
    공식 시험 가이드 문서 보기
    mls 취득후기 티스토리글
    mls 취득 후기 블로그
    jatendra AWS Certified Machine Learning -Specialty (MLS-C01) Exam Learning Path
    예시 : sagemaker faqs
  3. AWS Skillbuilder 사이트에 있는 Exam Readiness: AWS Certified Machine Learning - Specialty (Korean)
    취득후기 글에 있던 exam readiness 보면서 머신러닝 관련 용어나 내용정리
    (아래와 같은 것들 공부했음, 대충 이정도 였는데 만약 전부다 알고계시다면 AWS관련 데이터모으는법 아키 Sagemaker쓰는법 최적화정도...? 바로 공부해서 MLS 취득하러가십쇼 )
  • K-최근접 이웃 분류모델(KNN), k-최근접 이웃 회귀, 결정계수, 선형 회귀, 다중 회귀, 라쏘, 릿지, 소프트맥스, 시그모이드, 확률적 경사 하강법, 손실함수 ( 이진 크로스엔트로피 손실 함수, 크로스엔트로피 손실함수 ), 로지스틱 회귀, 결정트리, 지니 불순도, 정보이득, 랜덤 포레스트, 앙상블 학습, 엑스트라 트리, 그레디언트 부스팅, K-means clustering algorithm, centroid, elbow, inertia,차원축소, 주성분 분석(PCA), 인공 신경망, 심층 신경망, Relu, 옵티마이저, 모멘텀 최적화, 네스트로프 모멘텀 최적화, 손실 곡선, 드롭아웃, 조기종료, 합성곱, 패딩, 풀링, 가중치 시각화, 특성 맵 시각화, 피드포워드 신경망(FFNN), 순환 신경망, 말뭉치, 토큰, 원-핫인코딩, 단어 임베딩, SimpleRNN, LTSM 신경망, GRU, SVM, GAN, 강화학습, 로버스트 척도화, 상자그림, 산점, 상관, 혼동 행렬, 지도 학습 알고리즘, 물체 감지 알고리즘, 의미 체계 세분화, 선형 학습자, 하이퍼 파라미터, 퍼셉트론, 오차 제곱 합계, RMSE, Confusion Matrix, Precision, Recall, F1, AUC, TF-IDF(Term Frequency - Inverse Document Frequency)

  • SageMaker 알고리즘 정리 : Linear Learner, XGBoost, Seq2Seq, DeepAR, BlazingText, Object2Vec, Object Detection, Image Classification, Semantic Segmentation, Random Cut Forest, Neural Topic Model, Latent Dirichlet Allocation (LDA), K-Nearest-Neighbors (KNN), K-Means Clustering, Pricipal Component Analysis (PCA), Factorization Machines, IP Insights, Reinforcement Learning

  1. 유데미 AWS Certified Machine Learning Specialty 2023 - Hands On! Stephane Maarek 인강보기
  • 정말 정말 추천한다. 용어 정리할때 이해되지않던게 역시 동영상으로 보면 이해가 빠르다.. 워크샵이 적은건 좀 아쉽긴 함.
  • 위에서 정리한 내용 한번 더 설명해주시긴한다.
  • 또한, 관련 서비스도 설명해주기때문에 도움이 많이됬음.
  1. 인강에 워크샵이 적기때문에 세이지 메이커 워크샵 따라하기
    아래말고도 더 있는데, 확실히 워크샵 몇개씩 해보고 나면 도움이 많이 된다.
  1. AWS Skillbuilder 사이트에 있는 Exam Readiness: AWS Certified Machine Learning - Specialty (Korean)
  1. AWS Skillbuilder 사이트 무료 공식문제 풀기
    AWS Certified Machine Learning - Specialty Official Practice Question Set (MLS-C01 - Korean)
  • 처음에 푸니까 75퍼센트! 나왔다...! 이제 오답정리하고...
  1. 유데미 AWS Certified Machine Learning Specialty Full Practice Exam Stephane Maarek 모의고사 풀기
  • 문제가 적었고, 풀이가 링크도 많이 있고 길면 좋겠는데 조금 아쉽긴 하다. 그러나 매우 도움됨. 오답정리하고 찾고..뭐 평소대로
  • 이정도만 해도 무방하다고 보임
  1. 근데 난 시간이 남으니까 examtopic 또 보러갔다. 시간이 남으면, 굳이 안할 이유는 없으니까. 아래 문제 풀다가 시험 치러 갔다.
    ( 비슷한 문제가 있긴하더라. 걱정되시는 분들은 exam topics에 문제를 보고가면 좋을 것같다. 꼭 밑에 discussion!!!을 보고, 내용을 찾아서 답을 찾아야한다.)
    examtopics - mls

지하철 다니면서 읽은 글들

빅데이터 블로그, 머신러닝 블로그 글을 읽으면서 다녔다.
블로그 글들이 매우 좋아서 도움이 확실히 많이 된다.
그냥 많이 머리에 때려넣었다...ㅎㅎ;;
문제가 블로그글이랑 똑같이 나오는 경우가 많은거 같다. 계속 공부하면서 느끼지만...
aws big data blog
aws machine learning blog

용어정리할때마다 그냥 아래처럼 구글링해서 찾았다. 티스토리 선생님들... 챗지피티 많은 도움...감사...

알고리즘 정리가 정말 잘되어있는 티스토리 블로그 - 평생데이터분석이하고싶은꽁냥이
셰이플리값


@IT다봐요 카카오톡 오픈 톡방, @AWS의 모든것 카카오톡 오픈 톡방 감사합니다~~

@ㅎㅅ, ㅈㄹ 크레딧 너무 감사해요!
@ㅈㄹ, ㅈㅇ, ㅅㄱ 항상 도움을 받고있습니다. 항상 감사해요
@ㅈㄹ 책 추천해주셔서 감사합니다

1월부터는 운동할려고.... PT받으러 가야겠다.
그와중에 식도염온거 오열 ㅠㅠ 강해져야지.

다음은 DAS! 가보자고 ~
뭐가뭔지 모르는데, 앞으로 갈 커리어를 고민하기 보단. 일단, 좋은지 싫은지 공부부터 해보자.^^;

오늘은 기계학습을 다시 묻다나 마저 읽어야겠다.

근데 뭐랄까 머신러닝은 데이터가지고 최적의 알고리즘 적용하고 이런거 같은데...지금은 내 취향은 아닌거같다..^^:; 알고리즘 비교하려고 찾다보면 논문이 나옴......;;

profile
Are you nervous? Don't be

0개의 댓글