cs224w | Lecture 3. Node Embeddings

sungyeon park·2022년 10월 8일
0

Graph Learning

목록 보기
2/3

Embedding Nodes

Encoder and Decoder

  • Goal: embedding space에서 가깝에 위치하게 embedding하기 위함
    similarity(u,v)zvTzusimilarity(u,v) \approx \bold{z}_{v}^{T} \bold{z}_{u}

"Shallow" Encoding

  • Encoder is just an ebmbedding-lookup
  • Each node is assigned a unique embedding vector

similarity 를 maximize하는 parameter Z\bold{Z}를 optimize하는게 목표

Random-Walk Embeddings

$ \bold{Z}{u}^{T}\bold{Z}{v} \approx $ uu, vv가 random walk에서 co-occur 할 확률

  • Predicted probability와 실제 random-walk probability와 비슷하게 학습
  • Random walk을 했을 때 나타난 neighbor set node들의 확률이 높게 나타나야 함
  • Generally work most efficiently
  • Expressivity: incorporate high-order, multi-hop info
  • Efficiency: only need to consider pairs that co-occur

  • 모든 노드를 탐색하는건 expensive
    -> Solution: Negative sampling
    - Sample k Negative sampling
    - Sample k with prob. proportional to is degree
    - In practice 5~20
  • Optimize embeddings using Stochastic Gradient Descent

Node2Vec

  • 그래서 random walk을 어떻게 할건지?
  • node2vec은 graph에서 node를 vector로 sampling하는 strategy
  • Breadth-First Search
  • Depth-First Search

  • Parameters
    - Return parameter p
    • In-out parameter q: ratio between BFS and DFS

Embedding Entire Graphs

Approaches

  • Node(Sub-graph) embedding을 합함
  • Virtual node의 embedding
  • Anonymous Walks: 가능한 anonymous walks의 확률 벡터
  • Learn Walk Embeddings: Predict the next anonymous walk
profile
General Engineer

0개의 댓글