An integer N is given, representing the area of some rectangle.
The area of a rectangle whose sides are of length A and B is A B, and the perimeter is 2 (A + B).
The goal is to find the minimal perimeter of any rectangle whose area equals N. The sides of this rectangle should be only integers.
For example, given integer N = 30, rectangles of area 30 are:
(1, 30), with a perimeter of 62,
(2, 15), with a perimeter of 34,
(3, 10), with a perimeter of 26,
(5, 6), with a perimeter of 22.
Write a function:
def solution(N)
that, given an integer N, returns the minimal perimeter of any rectangle whose area is exactly equal to N.
For example, given an integer N = 30, the function should return 22, as explained above.
쉽게 풀었다. 전 약수 개수 구하기의 응용문제였다. 똑같이 루트 n크기 만큼 for문을 돌면서 perimeter의 값을 구해주고 최소값을 갱신하는 알고리즘이다. 시간복잡도는
import math
def solution(N):
minimum = 1000000000 * 4
for n in range(1, int(math.sqrt(N)) + 1):
if N % n == 0:
perimeter = 0
if n ** 2 == N:
perimeter = (2 * n) * 2
else:
perimeter = (n + (N // n)) * 2
if perimeter < minimum:
minimum = perimeter
return minimum