Letting g(u,v)=⟨u,v⟩g(u,v) =⟨u, v⟩g(u,v)=⟨u,v⟩, ⟨⋅,⋅⟩:TxM×TxM→R⟨·, ·⟩: T_xM × T_xM → R⟨⋅,⋅⟩:TxM×TxM→R satisfies inner product.
Thus, there exsists a symmetric positive-definite matrix MMM, such that ⟨u,v⟩=uTMv ⟨u, v⟩ = u^TMv\;\;⟨u,v⟩=uTMvfor all u,v∈TxM\;u, v ∈ T_xMu,v∈TxM. In this case, ⟨v,w⟩=vTg(x)w⟨v, w⟩ = v^T g(x)w⟨v,w⟩=vTg(x)w