1. Definition : Supremum
E⊂R and E=∅ 이라고 가정하자.
(1) E is bounded above ⟺ ∀a∈E,∃ M∈R s.t. a≤M.
M is called upper-bound of E.
(2) s∈R is a supremum of E ⟺ s is an upper-bound of E and s≤M for all upper-bounds of E.
(다시 말해, upperbound들 중 가장 작은 개체가 supremum이다.)
1.1. Theorem : Approximation Property for Suprema
If E has a (finite) supremum, then ∀ϵ>0, ∃ a∈E s.t. supE−ϵ<a≤supE.
pf)
Theorem이 False라고 가정하면, ∃ϵ0,∀a∈E s.t. a∈/(supE−ϵ0,supE]이다. 그렇다면, s:=supE−ϵ0 는 E의 upper-bound 라고 할 수 있다. 따라서 supE≤s=supE−ϵ0<supE 라는 contradiction이 생기므로, Theorem은 True이다.
1.2. Completenes Axiom
If E⊂R is non-empty and bounded above, then E has a (finite) supremum.
1.3. Theorem
If E⊂Z has a supremum, then supE∈E.
pf)
s:=supE라고 정의하자. Approx. Property for Suprema에 의해, 우리는 x0∈E s.t s−1<x0≤s0 를 하나 선택할 수 있다.
Claim : s=x0
If s=x0, choose x1∈E s.t. x0<x1≤s (by Approx. Property for Suprema). Then, 0<x1−x0≤s−x0<1 and hence x1−x0∈(0,1)∩Z which is contradiction!
( Remark: There is no n∈Z s.t 0<n<1. )
1.4. Theorem : Archimedes Principle
If a,b∈R,a>0, then ∃n∈N s.t b<n∗a.
pf)
Case-1 : b<a. Set n=1. b<n∗a=1∗a=a
Case-2 : b≥a. Consider E={k∈N:k∗a≤b}. Then 1∈E⊆N and E is bounded above by ba. By the Completenes Axiom and Thm 1.3, s:=supE exist and s∈E⊆N. Set n:=s+1, then n∈N and n∈/E. Thus b<n∗a.
2. Definition : Infimum
∅=E⊆R 이라고 하자.
(1) E is bounded below ⟺ ∃m∈R,∀a∈E,m≤a. m is lower-bound of E.
(2) t∈R is an infimum of E ⟺ t is a lower-bound of E and ∀m∈{x:x is lower bound of E},m≤t. ( lower-bound 중 가장 큰 개체가 infimum이다. )
(3) E is bounded ⟺ E is bounded both above and below.
2.1. Reflection
Reflection of E란, E⊆R에 대하여,
−E={x∈R:x=−a for some a∈E}를 말한다.
2.2 Theorem : Reflection Principle
For ∅=E⊆R, E has an infimum ⟺ −E has a supremum.
In this case, inf(E)=−sup(−E)
pf)
(1) "⇐" : Suppose that −E has a sup(−E)=:s. Then −s is a lower-bound of E. Let m be an any lower-bound of E. Since s≤−m, m≤−s. Thus, −s is the infimum of E.
(2) "⇒": By reflection, −E is bounded above. By Completenes Axiom, −E has a supremum.
3. Theroem : Well-ordering Principle
If ∅=E⊆N, then E has a least element x i.e. x∈E.
pf)
0 is a lower-bound of E. By reflection, Completenes Axiom and Theorem 1.3, −E has a sup(−E)=:s∈−E. By Reflection Principle, E has an inf(E)=−s∈E which is the least element.