(1) ROC_AUC
: 확률값이 필요하다
구분(분류모델) 평가지표 결과 및 설명
predict_proba()
from sklearn.metrics import roc_auc_score
roc_auc = roc_auc_score(y_val, pred[:,1])
print(roc_auc)
from sklearn.metrics import accuracy_score
pred = rf.predict(X_val)
pred[:10]
accuracy = accuracy_score(y_val, pred)
print(accuracy)
from sklearn.metrics import f1_score
f1 = f1_score(y_val, pred, pos_label='>50K')
print(f1)