Algorithm - DP Problems

이소라·2022년 11월 2일
0

Algorithm

목록 보기
29/77
post-custom-banner

LeetCode Problem : N-th Tribonacci Number

  • The Tribonacci sequence Tn is defined as follows:

    • T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.
  • Given n, return the value of Tn

    • Constraints:
      • 0 <= n <= 37
      • The answer is guaranteed to fit within a 32-bit integer, ie. answer <= 2^31 - 1.
  • Example 1:

    • Input: n = 4
    • Output: 4
    • Explanation:
      • T_3 = 0 + 1 + 1 = 2
      • T_4 = 1 + 1 + 2 = 4

Solution

/**
 * @param {number} n
 * @return {number}
 */
var tribonacci = function(n, memo = []) {
    if (memo[n]) return memo[n];
    if (n === 0) return 0;
    if (n === 1 || n === 2) return 1;
    const thirdNumber = tribonacci(n - 1, memo) + tribonacci(n - 2, memo) + tribonacci(n - 3, memo)
    memo[n] = thirdNumber;
    return thirdNumber;
};

LeetCode Problem : Min Cost Climbing Stairs

  • You are given an integer array cost where cost[i] is the cost of ith step on a staircase. Once you pay the cost, you can either climb one or two steps.

  • You can either start from the step with index 0, or the step with index 1.

  • Return the minimum cost to reach the top of the floor.

    • Constraints:
      • 2 <= cost.length <= 1000
      • 0 <= cost[i] <= 999
  • Example 1:

    • Input: cost = [10,15,20]
    • Output: 15
    • Explanation:
      • You will start at index 1.
        • Pay 15 and climb two steps to reach the top.
      • The total cost is 15.
  • Example 2:

    • Input: cost = [1,100,1,1,1,100,1,1,100,1]
    • Output: 6
    • Explanation:
      • You will start at index 0.
      • Pay 1 and climb two steps to reach index 2.
      • Pay 1 and climb two steps to reach index 4.
      • Pay 1 and climb two steps to reach index 6.
      • Pay 1 and climb one step to reach index 7.
      • Pay 1 and climb two steps to reach index 9.
      • Pay 1 and climb one step to reach the top.
      • The total cost is 6.

Solution

/**
 * @param {number[]} cost
 * @return {number}
 */
var minCostClimbingStairs = function(cost) {
    const length = cost.length;
    const memo = [];
    
    function dp(cost, index) {
        if (index < 0) return 0;
        if (index === 0 || index === 1) return cost[index];
        if (memo[index]) return memo[index];
        memo[index] = cost[index] + Math.min(dp(cost, index - 1), dp(cost, index -2));
        return memo[index];
    }
    
    return Math.min(dp(cost, length - 1), dp(cost, length - 2));
};

LeetCode Problem : Pascal's Triangle II

  • Given an integer rowIndex, return the rowIndexth (0-indexed) row of the Pascal's triangle.
  • In Pascal's triangle, each number is the sum of the two numbers directly above it as shown:
    - Constraints:
    - 0 <= rowIndex <= 33

Solution

/**
 * @param {number} rowIndex
 * @return {number[]}
 */
var getRow = function(rowIndex) {
    if (!rowIndex) return [1];
    
    let memo = [1, 1];
    let currRow;
    
    while(--rowIndex) {
        currRow = [1];
        for (let i = 0; i < memo.length - 1; i++) {
            currRow.push(memo[i] + memo[i + 1]);
        }
        
        currRow.push(1);
        memo = currRow;
    }
    
    
    return memo;
};

LeetCode Problem : Best Time to Buy and Sell Stock

  • You are given an array prices where prices[i] is the price of a given stock on the ith day.

  • You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

  • Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

    • Constraints:
      • 1 <= prices.length <= 10^5
      • 0 <= prices[i] <= 10^4
  • Example 1:

    • Input: prices = [7,1,5,3,6,4]
    • Output: 5
    • Explanation:
      • Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
      • Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
  • Example 2 :

    • Input: prices = [7,6,4,3,1]
    • Output: 0
    • Explanation:
      • In this case, no transactions are done and the max profit = 0.

Solution

/**
 * @param {number[]} prices
 * @return {number}
 */
var maxProfit = function(prices) {
    const length = prices.length;
    let profit = 0;
    let buyPrice = Infinity;
    let sellPrice;
    
    for (let i = 0; i < length - 1; i++) {
        if (prices[i] > buyPrice) continue;
        buyPrice = prices[i];
        
        for (let j = i + 1; j < length; j++) {
            sellPrice = prices[j];
            if (sellPrice <= buyPrice) continue;
            if (sellPrice - buyPrice > profit) {
                profit = sellPrice - buyPrice;
            }
        }
    }
    
    return profit;
};

LeetCode Problem : Climbing Stairs

  • You are climbing a staircase. It takes n steps to reach the top.

  • Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

  • Constraints:

    • 1 <= n <= 45
  • Example 1:

    • Input: n = 2
    • Output: 2
    • Explanation:
      1. 1 step + 1 step
      2. 2 steps
  • Example 2:

    • Input: n = 3
    • Output: 3
    • Explanation:
      1. 1 step + 1 step + 1 step
      2. 1 step + 2 steps
      3. 2 steps + 1 step

Solution

/**
 * @param {number} n
 * @return {number}
 */
var climbStairs = function(n) {
    let stairs = new Array(n+1).fill(0);
    stairs[1] = 1;
    stairs[2] = 2;

    for (let i = 3; i <= n; i++) {
        stairs[i] = stairs[i - 1] + stairs[i - 2];
    }
    return stairs[n];
};
// 2 ~ 7의 계단 오르는 방법 경우의 수
2 : 1 + 1 = 2
3 : 1 + 2 = 3
4 : 1 + 3 + 1 = 5
5 : 1 + 4 + 3(2+1) = 8
6 : 1 + 5 + 6(3+2+1) + 1 = 13
7 : 1 + 6 + 10(4+3+2+1) + 4 = 21
  • 규칙 파악하기
    • 점화식 : dp[n] = dp[n - 1] + dp[n - 2]



LeetCode Problem : Count Square Submatrices with All Ones

  • Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.

Examples

  • Example 1

    • Input: matrix = [[0,1,1,1], [1,1,1,1], [0,1,1,1]]
    • Output: 15
    • Explanation:
      • There are 10 squares of side 1.
      • There are 4 squares of side 2.
      • There is 1 square of side 3.
      • Total number of squares = 10 + 4 + 1 = 15.
  • Example 2

    • Input: matrix = [[1,0,1], [1,1,0], [1,1,0]]
    • Output: 7
    • Explanation:
      • There are 6 squares of side 1.
      • There is 1 square of side 2.
      • Total number of squares = 6 + 1 = 7.

Constraints

  • 1 <= arr.length <= 300
  • 1 <= arr[0].length <= 300
  • 0 <= arr[i][j] <= 1

Solution

  • 다른 사람 문제 풀이 참고(Python/JS/C++ O(m*n) sol by DP)
    • 각 배열 요소에 대한 정사각형의 최대 길이를 구하는 문제
    • i행, j열 요소에 대한 정사각형의 최대 길이를 DP[i][j]라고할 때,
      • i행, j열의 요소가 1일 경우,
      • DP[i][j] = 1 + Math.min(DP[i-1][j-1], DP[i-1][j], DP[i][j-1])

  • DP Table
111
112
122
123
  • total counts of squares = 1 + 1 + 1 + 1 + 2 + 2 + 1 + 2 + 3 = 14
/**
 * @param {number[][]} matrix
 * @return {number}
 */
var countSquares = function(matrix) {
    let result = 0;

    for (let i = 0; i < matrix.length; i++) {
        for (let j = 0; j < matrix[0].length; j++) {
            if (!matrix[i][j]) {
                continue;
            }

            if (i > 0 && j > 0) {
                matrix[i][j] = 1 + Math.min(matrix[i - 1][j - 1], matrix[i - 1][j], matrix[i][j - 1]);
            }

            result += matrix[i][j];
        }
    }
    return result;
};
post-custom-banner

0개의 댓글