모델 시각화 torchinfo

ssm·2024년 2월 14일

pytorch

목록 보기
3/3
from torchsummary import summary # 이거 보다 
from torchinfo import summary	#이게 좋다고 해서 이걸 사용함
pip install torchinfo		# conda는 없는 것 같음

from torchinfo import summary

model = VGG(cfgs["vgg16"], batch_norm=False)
summary(model, input_size=(2,3,224,224))

output ↓

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
VGG                                      [2, 1000]                 --
├─Sequential: 1-1                        [2, 512, 7, 7]            --
│    └─Conv2d: 2-1                       [2, 64, 224, 224]         1,792
│    └─ReLU: 2-2                         [2, 64, 224, 224]         --
│    └─Conv2d: 2-3                       [2, 64, 224, 224]         36,928
│    └─ReLU: 2-4                         [2, 64, 224, 224]         --
│    └─MaxPool2d: 2-5                    [2, 64, 112, 112]         --
│    └─Conv2d: 2-6                       [2, 128, 112, 112]        73,856
│    └─ReLU: 2-7                         [2, 128, 112, 112]        --
│    └─Conv2d: 2-8                       [2, 128, 112, 112]        147,584
│    └─ReLU: 2-9                         [2, 128, 112, 112]        --
│    └─MaxPool2d: 2-10                   [2, 128, 56, 56]          --
│    └─Conv2d: 2-11                      [2, 256, 56, 56]          295,168
│    └─ReLU: 2-12                        [2, 256, 56, 56]          --
│    └─Conv2d: 2-13                      [2, 256, 56, 56]          590,080
│    └─ReLU: 2-14                        [2, 256, 56, 56]          --
│    └─Conv2d: 2-15                      [2, 256, 56, 56]          590,080
│    └─ReLU: 2-16                        [2, 256, 56, 56]          --
│    └─MaxPool2d: 2-17                   [2, 256, 28, 28]          --
│    └─Conv2d: 2-18                      [2, 512, 28, 28]          1,180,160
│    └─ReLU: 2-19                        [2, 512, 28, 28]          --
│    └─Conv2d: 2-20                      [2, 512, 28, 28]          2,359,808
│    └─ReLU: 2-21                        [2, 512, 28, 28]          --
│    └─Conv2d: 2-22                      [2, 512, 28, 28]          2,359,808
│    └─ReLU: 2-23                        [2, 512, 28, 28]          --
│    └─MaxPool2d: 2-24                   [2, 512, 14, 14]          --
│    └─Conv2d: 2-25                      [2, 512, 14, 14]          2,359,808
│    └─ReLU: 2-26                        [2, 512, 14, 14]          --
│    └─Conv2d: 2-27                      [2, 512, 14, 14]          2,359,808
│    └─ReLU: 2-28                        [2, 512, 14, 14]          --
│    └─Conv2d: 2-29                      [2, 512, 14, 14]          2,359,808
│    └─ReLU: 2-30                        [2, 512, 14, 14]          --
│    └─MaxPool2d: 2-31                   [2, 512, 7, 7]            --
├─AdaptiveAvgPool2d: 1-2                 [2, 512, 7, 7]            --
├─Sequential: 1-3                        [2, 1000]                 --
│    └─Linear: 2-32                      [2, 4096]                 102,764,544
│    └─ReLU: 2-33                        [2, 4096]                 --
│    └─Dropout: 2-34                     [2, 4096]                 --
│    └─Linear: 2-35                      [2, 4096]                 16,781,312
│    └─ReLU: 2-36                        [2, 4096]                 --
│    └─Dropout: 2-37                     [2, 4096]                 --
│    └─Linear: 2-38                      [2, 1000]                 4,097,000
==========================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
Total mult-adds (G): 30.97
==========================================================================================
Input size (MB): 1.20
Forward/backward pass size (MB): 216.91
Params size (MB): 553.43
Estimated Total Size (MB): 771.54
==========================================================================================
profile
내 뇌의 외장하드

0개의 댓글