명함 지갑을 만드는 회사에서 지갑의 크기를 정하려고 합니다. 다양한 모양과 크기의 명함들을 모두 수납할 수 있으면서, 작아서 들고 다니기 편한 지갑을 만들어야 합니다. 이러한 요건을 만족하는 지갑을 만들기 위해 디자인팀은 모든 명함의 가로 길이와 세로 길이를 조사했습니다.
아래 표는 4가지 명함의 가로 길이와 세로 길이를 나타냅니다.
| 명함 번호 | 가로 길이 | 세로 길이 |
|---|---|---|
| 1 | 60 | 50 |
| 2 | 30 | 70 |
| 3 | 60 | 30 |
| 4 | 80 | 40 |
가장 긴 가로 길이와 세로 길이가 각각 80, 70이기 때문에 80(가로) x 70(세로) 크기의 지갑을 만들면 모든 명함들을 수납할 수 있습니다. 하지만 2번 명함을 가로로 눕혀 수납한다면 80(가로) x 50(세로) 크기의 지갑으로 모든 명함들을 수납할 수 있습니다. 이때의 지갑 크기는 4000(=80 x 50)입니다.
모든 명함의 가로 길이와 세로 길이를 나타내는 2차원 배열 sizes가 매개변수로 주어집니다. 모든 명함을 수납할 수 있는 가장 작은 지갑을 만들 때, 지갑의 크기를 return 하도록 solution 함수를 완성해주세요.
| sizes | result |
|---|---|
| [[60, 50], [30, 70], [60, 30], [80, 40]] | 4000 |
| [[10, 7], [12, 3], [8, 15], [14, 7], [5, 15]] | 120 |
| [[14, 4], [19, 6], [6, 16], [18, 7], [7, 11]] | 133 |
문제 예시와 같습니다.
명함들을 적절히 회전시켜 겹쳤을 때, 3번째 명함(가로: 8, 세로: 15)이 다른 모든 명함보다 크기가 큽니다. 따라서 지갑의 크기는 3번째 명함의 크기와 같으며, 120(=8 x 15)을 return 합니다.
명함들을 적절히 회전시켜 겹쳤을 때, 모든 명함을 포함하는 가장 작은 지갑의 크기는 133(=19 x 7)입니다.
def solution(sizes):
return max(max(x) for x in sizes) * max(min(x) for x in sizes)
문제 설명에 나와 있는 모든 명함이 들어갈 수 있는 지갑의 사이즈를 최소한의 크기로 만들면 됩니다.
가장 큰 길이를 갖는 명함을 기준으로 한 길이를 정하면 되기에
sizes로 2차원 배열을 받는데, 반복문으로 한 배열씩 받아 가로 길이나 세로 길이 중 큰 길이만 뽑아 그 중 가장 큰 길이를 가져옵니다.
작은 길이 같은 경우 제일 작은 값을 하자니 더 큰 명함이 있기에 각 배열 중 작은 값들 중에 큰 값을 뽑아야 합니다.
그래서, 한 배열씩 받아서 그 중 짧은 가로 길이나 세로 길이만 뽑아 그 중 가장 작은 길이를 가져옵니다.
각 가져온 큰 길이와 작은 길이를 곱해서 지갑의 크기를 반환합니다.
큰 길이와 작은 길이를 반환하는 코드만 풀어서 살펴보면
for x in sizes:
print(x)
----------------------------
[60, 50]
[30, 70]
[60, 30]
[80, 40]
이렇게 받아오는데,
max로 받으면 한 배열마다의 큰 값을 가져옵니다.
for x in sizes:
print(max(x))
----------------------------
60
70
60
80