De Choudhury, M., Gamon, M., Counts, S., & Horvitz, E. (2013). Predicting Depression via Social Media. Proceedings of the International AAAI Conferenc
Glen Coppersmith, Mark Dredze, and Craig Harman. 2014. Quantifying Mental Health Signals in Twitter. In Proceedings of the Workshop on Computational L
> Sindhu Kiranmai Ernala, Michael L. Birnbaum, Kristin A. Candan, Asra F. Rizvi, William A. Sterling, John M. Kane, and Munmun De Choudhury. 2019. M
De Choudhury, M., & Kıcıman, E. (2017). The Language of Social Support in Social Media and its Effect on Suicidal Ideation Risk. Proceedings of the ..
De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., & Kumar, M. (2016). Discovering Shifts to Suicidal Ideation from Mental Health Content in
Chancellor, S., & De Choudhury, M. (2020). Methods in predictive techniques for mental health status on social media: A critical review. Npj Digital M
Roy, A., Nikolitch, K., McGinn, R., Jinah, S., Klement, W., & Kaminsky, Z. A. (2020). A machine learning approach predicts future risk to suicidal ide
Ophir, Y., Tikochinski, R., Asterhan, C. S., Sisso, I., & Reichart, R. (2020). Deep neural networks detect suicide risk from textual Facebook posts. S