Summary_Libraryπ
πππPYTHON LIBRARY NUMBY
0.import numpy
- Make:
arr = np.array(list)
or arr = np.array([[1,2,3],[4,5,6]])
- Characteritics
- Can do sum
sum(arr1+arr2)
- count column and row:(arr(row. column))
arr.shape
- count which type of array (1,2,or 3)
arr.ndim
-count how many indicator inside:
arr.size
-to change the datatype:
arr = np.array(list, dtype = np.int64)
arr = arr.astype(np.int64)
-to change the shape:
arr = arr.reshape(row,column)
-to range from..to....
arr = np.arange(startno,tono)
-to get random no
np.random.rand(row,column)
arr= np.random.randint(st,en,size=(row,column))
ππππLIBRARY PANDAS
- Make:
ham 1 chieu: pop = pd.Series([1,2,3,4], index = [de muc], name ='')
or mang 2 chieu tro len:
df = pd.DataFrame({key:value})
=pd.DataFrame(data)
- Characteritics
- Can do sum
df.sum(axis =1/0)
- count column and row:(arr(row. column))
df.shape
- count which type of array (1,2,or 3)
df.ndim
-count how many indicator inside:
df.size
-to change the datatype:
df = arr.astype(np.int64)
-to change the shape:
df = df.reshape(row,column)
-to range from..to....
df = pd.arange(startno,tono)
-to get random no
np.random.rand(row,column)
arr= pd.random.randint(st,en,size=(row,column))
- to delete
del df[' 1']
df.drop('javascript',inplace = True)
- to sort value:
df.sort_values(by = [' ',' '])
df.sort_values(by = (' ')
- to sort index
df.sort_index(ascending = False/True): μΈλ±μ€ κΈ°μ€μΌλ‘ μ λ ¬
- to import data from excel/csv
score = pd.read_csv("./data/score.csv", encoding ="cp949", index_col = "κ³Όλͺ©")
- to add into df
df.[' '] = [ ]
- to display(lon nhat toi nho nhat)
display(score.sort_values(by ='2λ°')[::-1])
- to sum in df and add sum as a column
score['sum']= score.loc[:,:'4λ°'].sum(axis = 1)
- to cal min/max
score.loc["Max score"]=score.loc[:,:'4λ°'].max(axis =1)
score.loc["Min score"]=score.loc[:,:'4λ°'].min(axis =1)
- to split df
df['Domain'] = df['Email'].str.split('@').str[1]
- to use the function
def assign_grade(score):
if score>= 80 :
return 'A'
elif score >= 60 :
return 'B'
elif score >= 40 :
return 'C'
elif score >= 20 :
return 'D'
else :
return 'F'
score.applymap(assign_grade)
- to merge
pd.merge(h_info,r_info,how = 'left/right/innner',on = "common thing")
- to groupby
age_df.groupby(by=["category"]).count/sum()
- to concat (merge + arrange order)
pd.concat([cnt2019.p2019_2020.cnt2020.p2020_2021.cnt2021],axis=1)
- to rename
cnt2019.name = "2019 total"
πππPYTHON_LIBRARY_CHART(MATPLOTLIB)
0. IMPORT
import matplotlib.pyplot as plt
import random
import random as rand
df = pd.DataFrame(np.random.rand(50,4)*100, columns = ['A','B','C','D']).astype(np.int64)
- MAKE
x = [row]
y = [column]
(line)
plt.plot(x,y, ls = '-.',color = 'green', lw = 1, marker = 'β',mec = 'green' , mfc = 'green')
(shape - bar)
plt.bar(x,y,color = 'lightblue')
(shape-bar- opposite)
plt.barh(x,y)
(scatter)
plt.scatter(x = df['A'], y = df['B'], label = 'group1',s = 90)
plt.scatter(x = df['C'], y = df['D'], label = 'group2')
- to make label
plt.xlabel('')
plt.ylabel(' ')
- to make limited(range)
plt.lim(begin number, end number)
- to make title
plt.title('title name',loc = 'center/left/right')
- to show the chart
plt.show()
- to show data head,tail
data.head()
data.tail()
- to count how many for each element
data['seach column name'].value_counts()
- to index the row
x= y.index
- to show text in the chart
for i in range (len(y)):
plt.text(x[i],y[i],f'{y[i]}')
- to larger the size
plt.figure(figsize = (20,10))
- to sort the largest to smallest
dt = dt.sort_values('μ¬μμμ', ascending = False)