!pip install plotly_express
import pandas as pd
titanic_url = 'https://raw.githubusercontent.com/PinkWink/ML_tutorial/master/dataset/titanic.xls'
titanic = pd.read_excel(titanic_url)
titanic.head()
import matplotlib.pyplot as plt
import seaborn as sns
f, ax = plt.subplots(1,2, figsize=(16,8))
titanic['survived'].value_counts().plot.pie(ax=ax[0], autopct='%1.1f%%', shadow=True, explode=[0,0.05])
ax[0].set_title('Pie plot_survived')
ax[0].set_ylabel('')
sns.countplot(x='survived', data=titanic, ax=ax[1])
ax[1].set_title('Count plot_survived')
plt.show()
f, ax = plt.subplots(1,2, figsize=(16,8))
sns.countplot(x='sex', data=titanic, ax=ax[0])
ax[0].set_title('Count of passengers of sex')
ax[0].set_ylabel('')
sns.countplot(x='sex', data=titanic, hue='survived', ax=ax[1])
ax[1].set_title('Sex : Survived')
plt.show()
pd.crosstab(titanic['pclass'], titanic['survived'], margins=True)
grid = sns.FacetGrid(titanic, row='pclass', col='sex', height=4, aspect=2)
grid.map(plt.hist, 'age', alpha=0.8, bins=20)
grid.add_legend();
import plotly_express as px
fig = px.histogram(titanic, x='age')
fig.show()
grid = sns.FacetGrid(titanic, row='pclass', col='survived', height=4, aspect=2)
grid.map(plt.hist, 'age', alpha=0.5, bins=20)
grid.add_legend();
titanic['age_cat'] = pd.cut(titanic['age'], bins=[0, 7, 15, 30, 60, 100],
include_lowest=True,
labels=['baby','teen','young','adult','old'])
titanic.head()
plt.figure(figsize=(14,6))
plt.subplot(131)
sns.barplot(x='pclass', y='survived', data=titanic)
plt.subplot(132)
sns.barplot(x='age_cat', y='survived', data=titanic)
plt.subplot(133)
sns.barplot(x='sex', y='survived', data=titanic)
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14,6))
women = titanic[titanic['sex'] == 'female']
men = titanic[titanic['sex'] == 'male']
ax = sns.histplot(women[women['survived']==1]['age'], bins=20, label='survived', ax=axes[0], kde=False)
ax = sns.histplot(women[women['survived']==0]['age'], bins=40, label='not survived', ax=axes[0], kde=False)
ax.legend(); ax.set_title('Female')
ax = sns.histplot(men[men['survived']==1]['age'], bins=18, label='survived', ax=axes[1], kde=False)
ax = sns.histplot(men[men['survived']==0]['age'], bins=48, label='not survived', ax=axes[1], kde=False)
ax.legend(); ax.set_title('male')
import re
title = []
for idx, dataset in titanic.iterrows():
tmp = dataset['name']
title.append(re.search('\,\s\w+(\s\w+)?\.',tmp).group()[2:-1])
titanic['title'] = title
titanic.head()
pd.crosstab(titanic['title'], titanic['sex'])
titanic['title'].unique()
titanic['title'] = titanic['title'].replace('Mlle','Miss')
titanic['title'] = titanic['title'].replace('Ms','Miss')
titanic['title'] = titanic['title'].replace('Mme','Mrs')
Rare_f = ['Dona','Lady','the Countess']
Rare_m = ['Capt','Col','Don','Major','Rev','Sir','Dr','Master','Jonkheer']
for each in Rare_f:
titanic['title'] = titanic['title'].replace(each,'Rare_f')
for each in Rare_m:
titanic['title'] = titanic['title'].replace(each,'Rare_m')
titanic['title'].unique()
titanic[['title','survived']].groupby(['title'], as_index=False).mean()
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(titanic['sex'])
# le.classes_
titanic['gender'] = le.transform(titanic['sex'])
titanic.head()
titanic = titanic[titanic['age'].notnull()]
titanic = titanic[titanic['fare'].notnull()]
titanic.info()
from sklearn.model_selection import train_test_split
X = titanic[['pclass','age','sibsp','parch','fare','gender']]
y = titanic['survived']
X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=0.8, random_state=13)
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
dt = DecisionTreeClassifier(max_depth=4, random_state=13)
dt.fit(X_train,y_train)
pred = dt.predict(X_test)
print(accuracy_score(y_test, pred))
디카프리오의 생존률
import numpy as np
dicaprio = np.array([[3,18,0,0,5,1]])
print('Dicaprio: ', dt.predict_proba(dicaprio)[0,1])
윈슬릿의 생존률
wislet = np.array([[1,16,1,0,100,0]])
print('Winslet: ', dt.predict_proba(wislet)[0,1])