realloc(list, sizeof(int)*n);
과 같이 쓰이며 이때 원 메모리 공간에 저장되어 있던 값들이 사라질 수 있으므로 임시 메모리 공간을 할당해 주는 것이 필요하다. 물론 malloc 이나 realloc 으로 할당한 메모리가 더 이상 필요하지 않게 되면 free 함수로 해제해 주어야 한다.: struct 구조체이름 { 자료형 멤버이름; . . . };
혹은 typedef struct { 자료형 멤버이름; . . . } 구조체이름;
과 같이 정의한다. 구조체의 속성값에 접근하려면 구조체이름.멤버이름
처럼 점(.) 연산자를 이용한다.
: 메모리 덩어리 여러 개를 포함하는 데이터 구조로, 메모리들이 포인터를 통해 연결되어 있다(값들이 배열처럼 인접해 있지 않기 때문). 값들 뿐만 아니라 값들의 개수만큼의 포인터도 저장해야 하므로 메모리는 두 배 정도 사용된다.
- 아래와 같은 형태로, node가 갖는 값(여기에서는 int형 변수) 후에 struct node형의 포인터(다음 node를 가리킴)가 오는 형식으로 구성되어 있다.
typedef struct node {
int number;
struct node * next;
} node;
#include <stdio.h>
#include <stdlib.h>
//연결 리스트의 기본 단위가 되는 node 구조체를 정의합니다.
typedef struct node
{
//node 안에서 정수형 값이 저장되는 변수를 number으로 지정합니다.
int number;
//다음 node의 주소를 가리키는 포인터를 *next로 지정합니다.
struct node *next;
}
node;
int main(void)
{
// list라는 이름의 node 포인터를 정의합니다. 연결 리스트의 가장 첫 번째 node를 가리킬 것입니다.
// 이 포인터는 현재 아무 것도 가리키고 있지 않기 때문에 NULL 로 초기화합니다.
node *list = NULL;
// 새로운 node를 위해 메모리를 할당하고 포인터 *n으로 가리킵니다.
node *n = malloc(sizeof(node));
if (n == NULL)
{
return 1;
}
// n의 number 필드에 1의 값을 저장합니다. “n->number”는 “(*n).numer”와 동일한 의미입니다.
// 즉, n이 가리키는 node의 number 필드를 의미하는 것입니다.
// 간단하게 화살표 표시 ‘->’로 쓸 수 있습니다. n의 number의 값을 1로 저장합니다.
n->number = 1;
// n 다음에 정의된 node가 없으므로 NULL로 초기화합니다.
n->next = NULL;
// 이제 첫번째 node를 정의했기 떄문에 list 포인터를 n 포인터로 바꿔 줍니다.
list = n;
// 이제 list에 다른 node를 더 연결하기 위해 n에 새로운 메모리를 다시 할당합니다.
n = malloc(sizeof(node));
if (n == NULL)
{
return 1;
}
// n의 number와 next의 값을 각각 저장합니다.
n->number = 2;
n->next = NULL;
// list가 가리키는 것은 첫 번째 node입니다.
//이 node의 다음 node를 n 포인터로 지정합니다.
list->next = n;
// 다시 한 번 n 포인터에 새로운 메모리를 할당하고 number과 next의 값을 저장합니다.
n = malloc(sizeof(node));
if (n == NULL)
{
return 1;
}
n->number = 3;
n->next = NULL;
// 현재 list는 첫번째 node를 가리키고, 이는 두번째 node와 연결되어 있습니다.
// 따라서 세 번째 node를 더 연결하기 위해 첫 번째 node (list)의
// 다음 node(list->next)의 다음 node(list->next->next)를 n 포인터로 지정합니다.
list->next->next = n;
// 이제 list에 연결된 node를 처음부터 방문하면서 각 number 값을 출력합니다.
// 마지막 node의 next에는 NULL이 저장되어 있을 것이기 때문에 이 것이 for 루프의 종료 조건이 됩니다.
for (node *tmp = list; tmp != NULL; tmp = tmp->next)
{
printf("%i\n", tmp->number);
}
// 메모리를 해제해주기 위해 list에 연결된 node들을 처음부터 방문하면서 free 해줍니다.
while (list != NULL)
{
node *tmp = list->next;
free(list);
list = tmp;
}
}
// node 추가
node *newnode = malloc(sizeof(node));
newnode->next = n;
n = newnode;
// node 삭제
n->next = NULL;
free(n);
//이진 검색 트리의 노드 구조체
typedef struct node
{
// 노드의 값
int number;
// 왼쪽 자식 노드
struct node *left;
// 오른쪽 자식 노드
struct node *right;
} node;
// 이진 검색 함수 (*tree는 이진 검색 트리를 가리키는 포인터)
bool search(node *tree)
{
// 트리가 비어있는 경우 ‘false’를 반환하고 함수 종료
if (tree == NULL)
{
return false;
}
// 현재 노드의 값이 50보다 크면 왼쪽 노드 검색
else if (50 < tree->number)
{
return search(tree->left);
}
// 현재 노드의 값이 50보다 작으면 오른쪽 노드 검색
else if (50 > tree->number)
{
return search(tree->right);
}
// 위 모든 조건이 만족하지 않으면 노드의 값이 50이므로 ‘true’ 반환
else {
return true;
}
}