시각화 (워드클라우드)

코드
import matplotlib.pyplot as mpl
from konlpy.tag import Okt
from collections import Counter
from wordcloud import WordCloud, STOPWORDS
mpl.rcParams['font.family'] = 'Malgun Gothic'
mpl.rcParams['font.size'] = 20
mpl.rcParams['axes.unicode_minus'] = False
text = open('word.txt', encoding='utf-8-sig').read()
def token_konlpy(text):
okt=Okt()
return [word for word in okt.nouns(text) if len(word)>1]
noun = token_konlpy(text)
len(noun)
noun_set = set(noun)
len(noun_set)
f = open('noun_set.txt','w', encoding='utf-8')
f.write(str(noun_set))
f.close()
count = Counter(noun)
count.pop('코드')
count.pop('스테이')
count.pop('교육')
count.pop('업무')
count.pop('코스')
count.pop('운영')
count.pop('기반')
count.pop('위해')
count.pop('부트캠프')
len(count)
word = dict(count.most_common(10))
wc = WordCloud(max_font_size=200, font_path = 'C:\Windows\Fonts\malgun.ttf',background_color="white",width=2000, height=500).generate_from_frequencies(word)
mpl.figure(figsize = (40,40))
mpl.imshow(wc)
mpl.tight_layout(pad=0)
mpl.axis('off')
mpl.show()
word
{'데이터': 7,
'학습': 7,
'수강생': 5,
'분석': 3,
'취업': 3,
'입학': 3,
'과정': 3,
'경험': 3,
'연구': 2,
'인재': 2}