cd Desktop
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
cd gaussian-splatting
conda env create --file environment.yml
diff_gaussian_rasterization
과 simple_knn
까는데 문제가 생겼다 ㅠㅠㅠㅠㅠ. 문제의 원인은 다음과 같다.RuntimeError:
The detected CUDA version (12.2) mismatches the version that was used to compile
PyTorch (11.6). Please make sure to use the same CUDA versions.
apt-get
으로 설치한 놈은 다른 경로에 가 있을거니 경로를 검색해서 강제로 usr/local/cuda/include
로 cudnn.h
를 복사하거나 symbolic link 걸어두라고 하더라 ㅎㅎ!sudo find / -name 'cudnn.h'
sudo cp /usr/include/cudnn*.h /usr/local/cuda/include/
sudo cp /usr/lib/x86_64-linux-gnu/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
name: gaussian_splatting
channels:
- pytorch
- conda-forge
- defaults
dependencies:
- cudatoolkit=11.6
- plyfile
- python=3.7.13
- pip=22.3.1
- pytorch=1.12.1
- torchaudio=0.12.1
- torchvision=0.13.1
- tqdm
- pip:
- submodules/diff-gaussian-rasterization
- submodules/simple-knn
conda create -n gs3 python=3.10
conda activate gs3
conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=12.1 -c pytorch -c nvidia
# verify pytorch installation
pip install plyfile tqdm
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
# 기본
sudo apt-get update
sudo apt install -y ubuntu-drivers-common
# 쿠다 재설치를 위한 전부 삭제
sudo apt-get purge 'nvidia*'
sudo apt-get autoremove
sudo apt-get autoclean
sudo rm -rf /usr/local/cuda*
nvidia-smi
와 nvcc -V
둘다 명령어를 찾을 수 없다고 나옴 ㅇㅇsudo ubuntu-drivers devices
sudo apt install nvidia-driver-535
sudo reboot
12.1.1
로 진행했다는 점.. 535가 아닌 530이 파일명인게 걸렸지만.. 문제 없이 일단 됬다.# cudnn 이름이 포함된 패키지 모두 찾기
dpkg -l | grep cudnn
# 특정 이름 패키지 삭제하기 * N번 노가다
sudo apt-get remove --purge cudnn
# 위는 하나의 예시고, 일일이 패키지 다 지움
cd Desktop
tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz
sudo cp cudnn-linux-x86_64-8.9.7.29_cuda12-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp cudnn-linux-x86_64-8.9.7.29_cuda12-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
conda create -n gs3 python=3.10
conda activate gs3
conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=12.1 -c pytorch -c nvidia
# verify pytorch installation
pip install plyfile tqdm
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
# Dependencies
sudo apt install -y libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev
# Project setup
cd SIBR_viewers
cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release # add -G Ninja to build faster
wget https://github.com/Kitware/CMake/releases/download/v3.30.1/cmake-3.30.1.tar.gz
tar -xvf cmake-3.30.1.tar.gz
cd cmake-3.30.1
./bootstrap --prefix=/usr
sudo apt update
sudo apt install openssl -y
sudo apt install libssl-dev -y
# 다시 이전 명령어 수행하면 정상 수행된다잉
./bootstrap --prefix=/usr
make
sudo make install
기억하기: cmake를 콘다 안에서 해버림 ㅎㅎ 나중에 다른 콘다 만들면 cmake 또 해버리죠
cmake --version
으로 깔린거 확인 가능cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release # add -G Ninja to build faster
cmake --build build -j24 --target install
# with path in gaussian-splatting
# folder room is in gaussian-splatting
./SIBR_viewers/install/bin/SIBR_remoteGaussian_app --path room
# with path in gaussian-splatting
# folder room is in gaussian-splatting
./SIBR_viewers/install/bin/SIBR_gaussianViewer_app --m room/