An array A consisting of N integers is given. It contains daily prices of a stock share for a period of N consecutive days. If a single share was bought on day P and sold on day Q, where 0 ≤ P ≤ Q < N, then the profit of such transaction is equal to A[Q] − A[P], provided that A[Q] ≥ A[P]. Otherwise, the transaction brings loss of A[P] − A[Q].
For example, consider the following array A consisting of six elements such that:
A[0] = 23171
A[1] = 21011
A[2] = 21123
A[3] = 21366
A[4] = 21013
A[5] = 21367
If a share was bought on day 0 and sold on day 2, a loss of 2048 would occur because A[2] − A[0] = 21123 − 23171 = −2048. If a share was bought on day 4 and sold on day 5, a profit of 354 would occur because A[5] − A[4] = 21367 − 21013 = 354. Maximum possible profit was 356. It would occur if a share was bought on day 1 and sold on day 5.
Write a function,
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers containing daily prices of a stock share for a period of N consecutive days, returns the maximum possible profit from one transaction during this period. The function should return 0 if it was impossible to gain any profit.
For example, given array A consisting of six elements such that:
A[0] = 23171
A[1] = 21011
A[2] = 21123
A[3] = 21366
A[4] = 21013
A[5] = 21367
the function should return 356, as explained above.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [0..400,000];
each element of array A is an integer within the range [0..200,000].
답은 다 맞았지만 퍼포먼스에서 일부 실패, O(N)² 때문이다.
class Solution {
public int solution(int[] A) {
int max = 0;
for(int i=0; i<A.length-1; i++) {
int priceBought = A[i];
for(int j=(i+1); j<A.length;j++) {
int priceSold = A[j];
int profit = priceSold - priceBought;
if (profit > max) {
max = profit;
}
}
}
return max > 0 ? max : 0;
}
}
퍼포먼스 통과를 위해 정렬을 사용했지만 역시나 퍼포먼스에서 실패하였다.
import java.util.Arrays;
class Solution {
public int solution(int[] A) {
Pair[] pairs = new Pair[A.length];
for(int i=0; i<A.length; i++) {
Pair pair = new Pair(A[i], i);
pairs[i] = pair;
}
Arrays.sort(pairs);
int max = 0;
for(int i=0; i<pairs.length-1; i++) {
Pair left = pairs[i];
for(int j=(pairs.length-1); j>i; j--) {
Pair right = pairs[j];
if(right.getIndex() <= left.getIndex()) {
continue;
} else {
int profit = right.getValue() - left.getValue();
if (profit > max) {
max = profit;
break;
}
};
}
}
return max;
}
}
class Pair implements Comparable<Pair> {
private int index;
private int value;
public Pair(int value, int index) {
this.value = value;
this.index = index;
}
public int getIndex() {
return this.index;
}
public int getValue() {
return this.value;
}
@Override
public int compareTo(Pair p) {
return this.value - p.getValue();
}
}
다이나믹 프로그래밍이라는 것에 대해 알아야 한다고 한다.
이곳에서 잘 설명해주고 있다.
function solution(A) {
if(A.length === 1 || A.length === 0) return 0;
let minPrice = A[0];
let localMaxProfit = 0;
let globalMaxProfit = 0;
for(let i = 1; i < A.length; i++) {
localMaxProfit = A[i] - minPrice;
if(A[i] < minPrice) minPrice = A[i];
globalMaxProfit = Math.max(localMaxProfit, globalMaxProfit);
}
if(globalMaxProfit < 0) return 0; //이익을 보는 경우가 없이, 손해만 나는 경우
return globalMaxProfit;
}