A non-empty array A consisting of N integers is given.
A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.
The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1].
For example, array A such that:
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
contains the following example double slices:
double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
double slice (3, 4, 5), sum is 0.
The goal is to find the maximal sum of any double slice.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A consisting of N integers, returns the maximal sum of any double slice.
For example, given:
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
the function should return 17, because no double slice of array A has a sum of greater than 17.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [3..100,000];
each element of array A is an integer within the range [−10,000..10,000].
못 풀어서 구글링했다. 답을 찾아보니 30분 고민한걸로는 영원히 못풀 문제더라.
무려 하루를 고민하셨다고 한다. 설명은 여기를 참조하자.
function solution(A) {
const N = A.length;
if(N === 3) return 0;
let headSum = A.map(i => 0);
let tailSum = A.map(i => 0);
for(let i = 1; i < N-1; i++) {
headSum[i] = Math.max(0, headSum[i-1] + A[i]);
}
for(let i = N-2; i >= 1; i--) {
tailSum[i] = Math.max(0, tailSum[i+1] + A[i]);
}
let maxSum = 0;
for(let i = 1; i < N-1; i++) {
maxSum = Math.max(maxSum, headSum[i-1] + tailSum[i+1]);
}
return maxSum;
}
여기도 영어로 해당 문제에 대해 잘 설명해주고 있다.
public int solution(int[] A) {
int N = A.length;
int[] K1 = new int[N];
int[] K2 = new int[N];
for(int i = 1; i < N-1; i++){
K1[i] = Math.max(K1[i-1] + A[i], 0);
}
for(int i = N-2; i > 0; i--){
K2[i] = Math.max(K2[i+1]+A[i], 0);
}
int max = 0;
for(int i = 1; i < N-1; i++){
max = Math.max(max, K1[i-1]+K2[i+1]);
}
return max;
}