[이코테 2021] 14. 플로이드 워셜 알고리즘

Yewon Kim·2022년 7월 14일
0

CodingTest

목록 보기
19/22
post-thumbnail

🔊본 포스팅은 '(이코테 2021) 이것이 취업을 위한 코딩 테스트다 with 파이썬' 유튜브 강의를 수강하고 정리한 글입니다.

플로이드 워셜 알고리즘 개요

  • 모든 노드에서 다른 모든 노드까지의 최단 경로를 모두 계산한다.
  • 플로이드 워셜(Floyd-Warshall) 알고리즘은 다익스타라 알고리즘과 마찬가지로 단계별로 거쳐 가는 노드를 기준으로 알고리즘을 수행한다.
    - 다만 매 단계마다 방문하지 않은 노드 중에 최단 거리를 갖는 노드를 찾는 과정이 필요하지 않다.
  • 플로이드 워셜은 2차원 테이블에 최단 거리 정보를 저장한다.
  • 플로이드 워셜 알고리즘은 다이나믹 프로그래밍 유형에 속한다.

플로이드 워셜 알고리즘

  • 각 단계마다 특정한 노드 k를 거쳐 가는 경우를 확인한다.
    a에서 b로 가는 최단 거리보다 a에서 k를 거쳐 b로 가는 거리가 더 짧은지 검사한다.
  • 점화식은 다음과 같다.

플로이드 워셜 알고리즘: 동작 과정 살펴보기

플로이드 워셜 알고리즘: 코드

INF = int(1e9)  # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수 및 간선의 개수를 입력받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현)를 만들고, 무한으로 초기화
graph = [[INF]*(n+1) for _ in range(n+1)]

# 자기 자신에게 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n+1):
	for b in range(1, n+1):
    	if a == b:
        	graph[a][b] = 0
            
# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
	# A에서 B로 가는 비용은 C라고 설정
    a, b, c = map(int, input().split())
    graph[a][b] = c
    
# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n+1):
	for a in range(1, n+1):
    	for b in range(1, n+1):
        	graph[a][b] = min(graph[a][b], graph[a][k]+graph[k][b])
            
# 수행된 결과를 출력
for a in range(1, n+1):
	for b in range(1, n+1):
    	# 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
        if graph[a][b] == INF:
        	print("INFINITY", end=" ")
        # 도달할 수 있는 경우 거리를 출력
        else:
        	print(graph[a][b], end=" ")
    print()

플로이드 워셜 알고리즘 성능 분석

  • 노드의 개수가 N개일 때 알고리즘상으로 N번의 단계를 수행한다.
  • 각 단계마다 O(N2)O(N^2)의 연산을 통해 현재 노드를 거쳐 가는 모든 경로를 고려한다.
  • 따라서 플로이드 워셜 알고리즘의 총 시간 복잡도는 O(N3)O(N^3)이다.

    - 플로이드 워셜 알고리즘이 사용되어야 하는 문제에서는 노드의 개수가 500개 이하의 작은 값으로 구성된 경우가 많다.
    - 또한 단순히 계산하더라도 다시말해 노드의 개수가 500개가 된다고해도 500X500X500은 1억이 넘어가는 수이기 때문에 시간제한이 넉넉하지 않다면 시간 초과 판정을 받을 수 있다.

    "최단 거리를 구해야 하는 문제가 출제되었을 때 다익스트라, 플로이드 워셜 등 다양한 알고리즘들 중에서 어떤 알고리즘을 사용하는게 적절한지에 대해 고민해봐야 한다."

0개의 댓글