Introduction to Causal Inference 강의 정리(10)

Kim YeonJu·2022년 8월 4일
0

causal inference

목록 보기
9/11

https://www.bradyneal.com/causal-inference-course
Introduction to Causal Inference라는 강의를 듣고 정리했습니다.

10. Causal Discovery from Observational Data


Independence-Based Causal Discovery

casual discovery : data → causal graph
structure identification : causal graph를 identify

10-1. Assumptions

Faithfulness Assumption

  • Markov assumption은 causal graph로 data의 distribution을 추론
  • faithfulness : data의 independent로 graph 상의 d-seperation을 추론

Violation of Faithfulness

Causal Sufficiency and Acyclicity

  • Causal Sufficiency: no unobserved confounders

  • Acyclicity: no cycles in the graph

  • All assumptions:

    • Markov assumption
    • Faithfulness
    • Causal sufficiency
    • Acyclicity

10-2. Markov Equivalence and Main Theorem

Chains and Forks Encode Same Independencies

  • same conditional independency

Immoralities are Special

Skeletons

  • skeleton으로 markov equivalence class에 대한 정보를 알 수 있다.

Markov Equivalence via Immoral Skeletons

Two important graph qualities that we can use to distinguish graphs:
1. Immoralities
2. Skeleton

Theorem: Two graphs are Markov equivalent if and only if they have the same
skeleton and same immoralities

Essential graph : skeleton + immoralities

  • CPDAG : completed partially direct acyclic graph

10-3. The PC Algorithm

PC algorithm

Start with complete undirected graph
Three steps:
1. Identify the skeleton
2. Identify immoralities and orient them
3. Orient qualifying edges that are incident on colliders

Identifying the Skeleton

  • undirected graph로 시작
  • conditioning set Z(empty도 가능)에 대하여 XYZX\perp Y | Z이면 X - Y edge를 삭제
    • empty conditioning set로 시작하여 size를 키움

Identifying the Immoralities

X – Z – Y 일 때
1. no edge between X and Y
2. Z 가 X와 Y를 conditionally independent하게 만드는 conditioning set가 아닐 때
(Z를 conditioning 할 때, X랑 Y가 dependent)
X – Z – Y 는 immortality

Orienting Qualifying Edges Incident on Colliders

모든 immoralities를 찾은 상태에서
Z - Y가 X → Z - Y이고, X - Y에 no edge일 때,
Z → Y

Markov equivalence class를 identify
essential graph에 가끔 undirected edge가 있기도 함

Removing Assumptions

  • No assumed causal sufficiency: FCI algorithm
  • No assumed acyclicity: CCD algorithm
  • Neither causal sufficiency nor acyclicity: SAT-based causal discovery

Hardness of Conditional Independence Testing

  • Independence-based causal discovery algorithms은 conditional independence testing으로 함.
  • Conditional independence testing은 infinite data면 단순하다.
  • finite data면 어렵다.

10-4. Can We Do Better?

  • faithfulness로 essential graph를 identify할 수 있다.(Markov equivalence class)
  • 더 assumption을 추가해서 narrow down
    • multinomial distributions 이나 linear gaussian structual equations로 markov equivalence class의 graph를 identify할 수 있다.(best)
    • non-gaussian structual equation, nonlinear structural equation은? Semi-parametric causal discovery

Semi-Parametric Causal Discovery

Independence-Based Causal Discovery 문제점

(Semi-Parametric Causal Discovery에는 없는 문제점)

  • faithfulness assumption 요구
  • conditional independence tests를 위해 large sample 필요
  • markov equivalence class만 identify 할 수 있음. → Semi-Parametric Causal Discovery 는 true causal graph 찾을 수 있다

10-5. No Identifiability Without Parametric Assumptions

Two Variable Case: Markov Equivalence

Two Variable Case: SCMs Perspective

뭐가 맞는지 알 수 없다.

parametric form에 대하여 assumption을 만들어야 함

10-6. Linear Non-Gaussian Setting

Linear Non-Gaussian Assumption

  • noise가 non-gaussian일 때

Identifiability in Linear Non-Gaussian Setting

  • U가 non-gaussian일 때

  • SCM의 reverse direction이 없다.
  • Y랑 U~\tilde{U} dependent

Identifiability in Linear Non-Gaussian Setting: Linear Fit

  • anti-causal direction을 하면 regression한 것과 결과가 다르다.
  • noise term이 non-gaussian이여서 생김.

Identifiability in Linear Non-Gaussian Setting: Residuals

  • anti-causal scm을 제대로 구하지 못함. U~\tilde{U}와 Y가 dependent

Linear Non-Gaussian Identifiability Extensions

• Multivariate: Shimizu et al., (2006)
• Drop causal sufficiency assumption: Hoyer et al. (2008)
• Drop acyclicity assumption: Lacerda et al. (2008)

10-7. Nonlinear Additive Noise Setting

Identifiability in Nonlinear Additive Noise Setting

Post-Nonlinear Setting

0개의 댓글