[TIL_201107] Ensemble Methods: Random Forests
Ensemble Methods
- 단일 모델의 overfitting 문제를 해결하는 동시에, 여러 예측의 결합을 통해 높은 정확도를 도출하고자 하는 기법
Random Forest
- Strong Learner - Random Forest
- Weak Learners - Decision Trees
Perturbations on Columns
- Pick random columns
- Build a decision tree
- Repeat 1-2
- Calculate Probability
Bagging
- Take random data subsets
- Train weak learners on each datasets
- Combine & calculate Probability
Forests of Randomized Trees
- Choose # of trees
- Use bagging to generate dataset
- Create splits
- Combine & calculate Probability