본 포스팅은 '(이코테 2021) 이것이 취업을 위한 코딩 테스트다 with 파이썬' 유튜브 강의를 수강하고 정리한 글입니다.
신장 트리
그래프에서 모든 노드를 포함하면서 사이클이 존재하지 않는 부분 그래프
최소 신장 트리
최소한의 비용으로 구성되는 신장 트리를 찾아야 할 때 어떻게 해야 할까요?
예를 들어 N개의 도시가 존재하는 상황에서 두 도시 사이에 도로를 놓아 전체 도시가 서로 연결될 수 있게 도로를 설치하는 경우를 생각해 봅시다.
대표적인 최소 신장 트리 알고리즘이다.
그리디 알고리즘으로 분류된다.
# 특정 원소가 속한 집합을 찾기
def find_parent(parent, x):
# 루트 노드를 찾을 때까지 재귀 호출
if parent[x] != x:
parent[x] = find_parent(parent, parent[x])
return parent[x]
# 두 원소가 속한 집합을 합치기
def union_parent(parent, a, b):
a = find_parent(parent, a)
b = find_parent(parent, b)
if a<b:
parent[b] = a
else:
parent[a] = b
# 노드의 개수와 간선(Union 연산)의 개수 입력 받기
v,e = map(int, input().split())
parent = [0]*(v+1) # 부모 테이블 초기화하기
# 모든 간선을 담을 리스트와, 최종 비용을 담을 변수
edges = []
result = 0
# 부모 테이블상에서, 부모를 자기 자신으로 초기화
for i in range(1, v+1):
parent[i] = i
# 모든 간선에 대한 정보를 입력 받기
for _ in range(e):
a,b,cost = map(int, input().split())
# 비용순으로 정렬하기 위해서 튜플의 첫 번째 원소를 비용으로 설정
edges.append((cost, a, b))
# 간선을 비용순으로 정렬
edges.sort()
# 간선을 하나씩 확인하며
for edge in edges:
cost, a, b = edge
# 사이클이 발생하지 않는 경우에만 집합에 포함
if find_parent(parent, a) != find_parent(parent, b):
union_parent(parent, a, b)
result += cost
print(result)