Input image (28x28 = 784 pixels)
tf.keras.layers.Fatten(input_shape=(28, 28, 1))
(2D data를 1D vector로 바뀌줌: flatten)
tf.keras.layers.Dense(128, activation=tf.nn.relu)
Dense layer (128 units)
Probability of each class
Output (10 units)
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
Sum of all values == 1 (100%)
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28, 1)), # input
tf.keras.layers.Dense(128, activation=tf.nn.relu), # hidden
tf.keras.layers.Dense(10, activation=tf.nn.softmax) # output
])