제목 날짜 내용 발행일 23.03.15
해당 포스터는 자료구조 학습 내용 중
Graph
기초이론에 대한 내용을 정리한 것입니다.
그래프는 여러 개의 점이 서로 복잡하게 연결된 관계를 표현한 자료구조
그래프라는 단어를 들었을 때 자료구조의 그래프를 처음 접한다면, 아마 대부분의 사람은 아래의 그림처럼 생긴 그래프를 떠올릴 것이다.
X축과 Y축이 존재하고, X축의 값에 따라 Y축의 값을 나타내는 그래프, 또는 수학 수업이나 발표에서 사용되는 자료로 자주 접한 그래프 등
그러나 컴퓨터 공학에서 이야기하는 자료구조 그래프는 전혀 다른 모습을 가지고 있다.
자료구조의 그래프는 마치 거미줄처럼 여러 개의 점이 선으로 이어져 있는 복잡한 네트워크망과 같은 모습을 가지고 있다.
직접적인 관계가 있는 경우 두 점 사이를 이어주는 선이 있다.
간접적인 관계라면 몇 개의 점과 선에 걸쳐 이어진다.
하나의 점을 그래프에서는 정점(vertex)이라고 표현
하나의 선은 간선(edge)이라고 함
다음 그림은 간단한 그래프입니다. 각각이 무엇인지 생각해보자.
두 정점을 바로 이어주는 간선이 있다면 이 두 정점은 인접하다.
인접 행렬은 서로 다른 정점들이 인접한 상태인지를 표시한 행렬로 2차원 배열의 형태로 나타낸다.
만약 A
라는 정점과 B
라는 정점이 이어져 있다면 1(true)
,
이어져 있지 않다면 0(false)
으로 표시한 일종의 표
만약 가중치 그래프라면 1 대신 관계에서 의미 있는 값
을 저장합니다.
A의 진출차수는 1개입니다: A —> C
[0][2] === 1 // A([0])는 C([2])로 가는 진출차수가 있다(1)
B의 진출차수는 2개입니다: B —> A, B —> C
[1][0] === 1 // B([1])는 A([0])로 가는 진출차수가 있다(1)
[1][2] === 1 // B([1])는 C([2])로 가는 진출차수가 있다(1)
C의 진출차수는 1개입니다: C —> A
[2][0] === 1 // C([2])는 A([0])로 가는 진출차수가 있다(1)
각 정점이 어떤 정점과 인접하는지를 리스트의 형태로 표현
각 정점마다 하나의 리스트를 가짐
이 리스트는 자신과 인접한 다른 정점을 담고 있다.
위 그래프를 인접 리스트로 표현하면 다음 그림과 같다.
B
는A
와C
로 이어지는 간선이 두 개가 있는데, 왜A
가C
보다 먼저일까? 이 순서는 중요한가?
보통은 중요하지 않다.
그래프, 트리, 스택, 큐 등 모든 자료구조는 구현하는 사람의 편의
와 목적
에 따라 기능을 추가/삭제할 수 있다.
그래프를 인접 리스트로 구현할 때, 정점별로 살펴봐야 할 우선순위를 고려해 구현할 수 있다.
이때, 리스트에 담긴 정점들을 우선순위별로 정렬할 수 있다.
우선순위가 없다면, 연결된 정점들을 단순하게 나열한 리스트가 된다.
우선순위를 다뤄야 한다면 더 적합한 자료구조(ex.
queue
,heap
)를 사용하는 것이 합리적이다. 따라서 보통은 중요하지 않다. (하지만 언제나 예외는 있다.)
한 개의 큰 표와 같은 모습을 한 인접 행렬은 두 정점 사이에 관계가 있는지, 없는지 확인하기에 용이
가장 빠른 경로(shortest path)를 찾고자 할 때 주로 사용됩니다.
최단 경로를 구하는 과정(BFS)에서는 그래프 탐색이 빈번하게 발생하는데, 이때 인접행렬이 인접리스트에 비해 조회 성능이 우수하다.
인접행렬의 경우 인덱스를 직접 접근하여 조회가 O(1)
로 이루어지기 때문
반면, 인접리스트의 경우 각 row
를 선형 조회해야 하므로 노드의 수가 N일 경우 O(N)
의 시간이 소요
정리하자면, 인접리스트의 경우 A 노드에서 B 노드로 이동하는 경우만 해도 O(N)
의 시간이 소요
최단 경로를 구하는 과정 자체에서도 시간이 많이 소요되기 때문에 인덱스를 통한 직접 접근이 가능한 인접행렬이 최단경로를 찾는 데 더 유리한 측면이 있다
정점 (vertex):
간선 (edge):
인접 정점 (adjacent vertex):
가중치 그래프 (weighted Graph):
비 가중치 그래프 (unweighted Graph):
무(방)향 그래프 (undirected graph):
앞서 보았던 내비게이션 예제는 무(방)향 그래프
단방향(directed) 그래프로 구현된다면
진입차수 (in-degree) / 진출차수 (out-degree):
인접 (adjacency):
자기 루프 (self loop):
정점에서 진출하는 간선이 곧바로 자기 자신에게 진입하는 경우 자기 루프를 가졌다고 표현
다른 정점을 거치지 않는다는 것이 특징
사이클 (cycle):
한 정점에서 출발하여 다시 해당 정점으로 돌아갈 수 있다면 사이클이 있다고 표현
내비게이션 그래프는 서울 —> 대전 —> 부산 —> 서울로 이동이 가능하므로,
우리가 일상에서 만날 수 있는 많은 곳에서 자료구조 그래프를 사용하고 있다.
포털 사이트의 검색 엔진, SNS에서 사람들과의 관계, 내비게이션 (길 찾기) 등에서 사용하는 자료구조가 바로 그래프다.
세 가지 모두 수많은 정점을 가지고 있고, 서로 관계가 있는 정점은 간선으로 이어져 있다.
세 가지 중에서 내비게이션 시스템이 어떤 방식으로 자료구조 그래프를 사용하는지 살펴보겠습니다.
서울에 사는 A는 부산에 사는 B와 오랜 친구 사이다. 이번 주말에 부산에서 열리는 B의 결혼식에 참석하기 위해 A는 차를 몰고 부산으로 가려고 한다. 대전에 살고 있는 친구 C도 B의 결혼식에 참석한다고 하여, A는 서울에서 출발하여 대전에서 C를 태워 부산으로 이동하려고 한다.
위의 예제에서는 3개의 정점이 존재한다 : A, B, C가 사는 각각의 도시(서울, 부산, 대전)를 그래프의 정점으로 삼을 수 있다.
이 3개의 정점은 서로 이어지는 간선을 가지고 있다.
이때에는 관계가 있다고 표현하며, 정점들이 간선으로 전부 연결이 되어 있으므로 연결 그래프
라고 한다.
정점: 서울, 대전, 부산
간선: 서울—대전, 대전—부산, 부산—서울
위에서 볼 수 있듯이 서울, 대전, 부산 사이에 간선이 존재하는데, 이 간선은 내비게이션에서 이동할 수 있음을 나타낸다다.
만약 여기에 캐나다의 토론토를 정점으로 추가한다면 어떻게 될까?
토론토라는 정점이 생겼지만, 자동차로는 토론토에서 한국으로 이동할 수 없기 때문에 캐나다의 토론토라는 정점과 한국의 도시인 서울, 대전, 부산이라는 정점 사이에 어떠한 간선도 추가할 수 없다.
그래프에선 이런 경우를 관계가 없다고 표현하며, 이렇게 하나라도 정점이 연결되어 있지 않은 그래프를 비연결 그래프
라고 한다.
예제로 돌아가서, 간선을 살펴보면 서울, 대전, 부산이 서로 관계가 있다는 것은 알 수 있지만, 각 도시가 얼마나 떨어져 있는지는 알 수 없다.
간선은 특정 도시 두 개가 이어져 있다는 사실만 알려줄 뿐, 그 외의 정보는 포함하지 않고 있다.
이렇게 추가적인 정보를 파악할 수 없는 그래프, 가중치(연결의 강도가 얼마나 되는지)가 적혀 있지 않은 이런 그래프를 비 가중치 그래프
라고 한다.
간단한 자바스크립트 객체를 이용하여 비유한다면 현재 상황은 다음과 같습니다.
// 비가중치 그래프로 나타낸 서울, 대전, 부산 그래프
let isConnected = {
seoul: {
busan: true,
daejeon: true
},
daejeon: {
seoul: true,
busan: true
},
busan: {
seoul: true,
daejeon: true
}
}
console.log(isConnected.seoul.daejeon) // true
console.log(isConnected.daejeon.busan) // true
위 정보만으로는 서울에서 부산까지 갈 수 있다는 사실 외에 파악할 수 있는 정보가 없다.
내비게이션이라면, 적어도 각 도시 간의 거리가 얼마나 되는지는 표시해야 하지 않을까?
현재의 비 가중치 그래프를 가중치 그래프로 바꾸고, 각 도시 간의 거리를 표시한다면 어떨까?
비가중치 그래프는 각 정점 간의 연결 여부만을 판단하는 반면,
가중치 그래프는 더 자세한 정보를 담을 수 있다.
정점: 서울, 대전, 부산
간선: 서울—140km—대전, 대전—200km—부산, 부산—325km—서울
이렇게 간선에 연결 강도(거리 등)를 표현한 그래프를 가중치 그래프
라고 한다.
내비게이션은 간선에 거리를 표기한 가중치 그래프가 확장되어, 수백만 개의 정점(주소)과 간선이 추가되어야 비로소 내비게이션에서 쓰는 자료구조와 유사해진다.
코드스테이츠 수업자료