두 개의 그룹 , 이 있다고 하자. 이 때, 임의의 1:1 대응 함수 가 있다고 할 때, 다음이 만족되면 대응 함수 가 isomorphism 하다고 불린다.
- 어떤 인지는 중요하지 않다. 그런 함수 가 하나라도 존재한다면 isomorphism이라고 부를 수 있다.
- 예시는 다음과 같이 들 수 있다.
- 대응을 먼저 생각해내고, 식을 전개하며 isomorphism의 조건을 만족하는지 확인하면 된다.
그룹 에 대해 의 coset을 라고 하자. 이때, 두 coset 사이에서 다음이 만족하면 연산자 는 induced opration이라고 부른다.
- 모든 coset은 그 coset에 대응되는 inverse한 coset이 있다.
원본 그룹 에서 나온 coset 는 'factor group of modulo ' 라고 불리며, 다음과 같이 표기 된다.
- Quotient group이라고도 불린다.
- 예를 들어서, 에서 5에 대한 modulo addition을 활용해 다음과 같이 coset을 추가로 정의할 수 있다.
여기서 factor groups를 다음과 같이 다시 정의할 수 있게 된다.한편, 와 는 완전히 다른 그룹이라는 사실을 명심해야 한다. 왜냐하면 는 정수 하나씩을 더하는 거라면, 는 coset 하나씩 뭉탱이로 더하는 것이기 때문이다.
원본 그룹 에서 나온 coset 는 'residue classes of modulo ' 라고 불린다.
Isomorphism과 같으나, 여기서는 1:1 대응 조건이어야 한다는 조건이 빠졌다. 즉, 일종의 weaker condition으로 보아도 무방하다.
- 이 약해진 조건으로 인해, 두 그룹은 반드시 같은 수의 원소를 가질 필요가 없어졌다.
- Homomorphism은 항등원은 항등원으로, 역원은 역원으로 매칭시켜준다.
- 만약 Homomorphism 가 다음과 같이 정의됐다고 하자.
이때 이 함수는 는 natural 혹은 canonical homomorphism이라고 불린다.
Kernel 는 Homomorphism 가 의 모든 원소를 의 항등원으로 대응시킬 때를 말한다.
Ring은 그룹의 특수한 정의 중 하나로, addition과 multiplication을 기본적으로 만족하는 그룹을 말한다. 여기에 추가로 다음이 만족되어야 한다.
1) 아벨리안 그룹이어야 한다.
2) 곱셈 연산자 는 assiciative 해야 한다. ()
3) 곱셈 연산자와 덧셈 연산자 모두에 대해서 distributive 해야 한다.
기억해야할 점은, 다음은 조건에 포함되지 않는다는 점이다.
1) Ring은 반드시 곱셈의 대한 교환법칙이 성립할 필요가 없다.
2) Ring은 반드시 곱셈에 대한 항등원과 역원을 포함할 필요가 없다.
- Characteristic of a ring은 임의의 그룹의 원소 에 대해서 으로 만드는 가장 작은 양수 을 말한다.
- 예를 들어서, 의 characteristic은 5이다. 어떤 원소건 5를 곱하면 모듈러 연산 때문에 죄다 0으로 보내버리기 때문이다.
- 한편, 실수 집합의 ring의 charateristic은 0이다. 반드시 0을 곱해야만 0으로 돌아오기 때문이다.
Field은 그룹의 특수한 정의 중 하나로, addition과 multiplication을 기본적으로 만족하며 ring보다 더 빡빡한 조건을 가진 그룹을 말한다.
1) 덧셈과 곱셈에 대해서 닫혀 있어야 한다.
2) 덧셈과 곱셈에 대해서 항등원과 역원이 같이 집합 안에 포함되어 있어야 한다.
3) 덧셈과 곱셈에 대해서 모든 원소가 associativity를 가져야 한다.4) 덧셈과 곱셈에 대해서 모든 원소가 commutativity를 가져야 한다.
5) 덧셈과 곱셈에 대해서 distribute가 가능해야 한다.