toy example
구할 수 있는 것
modified score ϵ~θ(zλ,c)=ϵθ(zλ,c)−w σλ∇zλ log pθ(c∣zλ)≈−σλ∇zλ [log p(zλ∣c) + w log pθ(c∣zλ)]\begin{aligned} \tilde{\epsilon}_{\theta}(z_{\lambda},c) &= \epsilon_{\theta}(z_{\lambda},c) - w\ \sigma_{\lambda}\nabla_{z_{\lambda}}\ \mathrm{log}\ p_{\theta}(c|z_{\lambda})\\ &\approx -\sigma_{\lambda}\nabla_{z_{\lambda}}\ [\mathrm{log}\ p(z_{\lambda}|c)\ +\ w\ \mathrm{log}\ p_{\theta}(c|z_{\lambda})]\end{aligned}ϵ~θ(zλ,c)=ϵθ(zλ,c)−w σλ∇zλ log pθ(c∣zλ)≈−σλ∇zλ [log p(zλ∣c) + w log pθ(c∣zλ)]
샘플링 시 기존의 ϵθ\epsilon_{\theta}ϵθ 대신 ϵθ~\tilde{\epsilon_{\theta}}ϵθ~를 사용하면 생성물의 distribution은 아래와 같다 p~θ(zλ∣c) ∝pθ(zλ∣c) pθ(c∣zλ)w\tilde{p}_{\theta}(z_{\lambda}|c)\ \propto p_{\theta}(z_{\lambda}|c)\ p_{\theta}(c|z_{\lambda})^{w}p~θ(zλ∣c) ∝pθ(zλ∣c) pθ(c∣zλ)w
가지고 있는 diffusion model이 unconditional model이라면?
unconditional & conditional model training
CFG sampling ϵ~θ(zλ,c)=(1+w) ϵθ(zλ,c)−w ϵθ(zλ)\tilde{\epsilon}_{\theta}(z_{\lambda},c) = (1+w)\ \epsilon_{\theta}(z_{\lambda},c) - w\ \epsilon_{\theta}(z_{\lambda})ϵ~θ(zλ,c)=(1+w) ϵθ(zλ,c)−w ϵθ(zλ)
inspired by an implicit classifier
classifier > inverting a generative model