Fast Abstractive Summarization with Reinforcement Learning

김수빈·2021년 11월 22일
2

논문 리뷰

목록 보기
4/14
post-thumbnail

📄Paper : Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting

💡 강화 학습을 사용하여 Extractive Abstractive model을 연결한 end-to-end 프레임워크

word-sentence hierarchical framework
→ Sentence level의 extract를 수행한 후, word-level의 rewrite 수행


💡 Contribution 정리

1. sentence-level policy gradient method (RL)

sentence-level의 Extractor와 word-level의 Abstractor를 연결함으로써
word-sentence hierarchy 프레임워크 구현

→ 언어 구조를 모델링하는 데 효과적이며, 병렬화 (parallel decoding) 를 가능하게 함


2. 모델 속도 개선

extract와 rewrite이 병렬적으로 동작하는 parallel decoding로 인해 모델 속도 개선
inference speed 10-20배 개선, training speed 4배 개선


🌱 세미나 자료

👇 세미나 자료 보러가기

✨ 리뷰한 논문

Chen, Y. C. and Bansal, M. "Fast abstractive summarization with reinforce-selected sentence rewriting." Proc. of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, pp. 675-686, 2018.

✨ 참고 문헌

  1. Huang, S., Wang, R., Xie, Q., Li, L., and Liu, Y. "An extraction-abstraction hybrid approach for long document summarization." Proc. of the 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC), Beijing, China, pp. 1-6, 2019.

  2. Vinyals, O., Fortunato, M., and Jaitly, N. "Pointer networks.“ Proc. of the 28th International Conference on Neural Information Processing Systems - Volume 2, Montreal, Canada, pp. 2692-2700, 2015.

  3. Vinyals, O., Bengio, S., and Kudlur, M. "Order matters: sequence to sequence for sets.“ Proc. of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.

profile
열심히 배우는 내가 되자

0개의 댓글