📖 Neural Networks
- “Neural networks are computing systems vaguely inspired by the biological neural networks that constitute animal brains.”
![](https://velog.velcdn.com/images/araseo/post/91c11c4b-70bf-435f-b7c1-79745403cb9f/image.png)
![](https://velog.velcdn.com/images/araseo/post/675524b1-c0a2-436b-8850-6a27935af9d7/image.png)
- Neural networks are function approximators that stack affine transformations followed by nonlinear transformations.
![](https://velog.velcdn.com/images/araseo/post/b94b156d-b991-4297-9778-5f6fac00e44d/image.png)
📖 Linear Neural Networks
- Let’s start with the most simple example.
![](https://velog.velcdn.com/images/araseo/post/84cd61ce-b5da-4113-ab4c-65bb2d550142/image.jpg)
- We compute the partial derivatives w.r.t. the optimization variables.
- Then, we iteratively update the optimization variables.
![](https://velog.velcdn.com/images/araseo/post/b38442b5-4501-4f4a-a4bc-d39d3e8464ce/image.jpg)
- Of course, we can handle multi dimensional input and output.
- One way of interpreting a matrix is to regard it as a mapping between two vector spaces.
![](https://velog.velcdn.com/images/araseo/post/de8a4a8b-de92-4962-a253-4f12336941e8/image.jpg)
📖 Beyond Linear Neural Networks
- What if we stack more?
- We need nonlinearity.
![](https://velog.velcdn.com/images/araseo/post/50d6eec9-e691-4b3c-abed-74a2bdc0140d/image.jpg)
![](https://velog.velcdn.com/images/araseo/post/f5f46f5e-514f-40ed-9b55-e9e4f559bbbd/image.png)
![](https://velog.velcdn.com/images/araseo/post/6532cc87-b08d-402a-a731-e49fcf44baff/image.png)
📖 Multi-Layer Perceptron
- This class of architectures are often called multi-layer perceptrons.
- Of course, it can go deeper.
![](https://velog.velcdn.com/images/araseo/post/1df0465a-598d-4730-b506-4513a40f8a98/image.jpg)
- What about the loss functions?
![](https://velog.velcdn.com/images/araseo/post/39054a77-eea6-4148-849f-2dee607e5cba/image.jpg)
<이 게시물은 최성준 교수님의 '뉴럴 네트워크 - MLP' 강의 자료를 참고하여 작성되었습니다.>
본 포스트의 학습 내용은 [부스트캠프 AI Tech 5기] Pre-Course 강의 내용을 바탕으로 작성되었습니다.
부스트캠프 AI Tech 5기 Pre-Course는 일정 기간 동안에만 운영되는 강의이며,
AI 관련 강의를 학습하고자 하시는 분들은 부스트코스 AI 강좌에서 기간 제한 없이 학습하실 수 있습니다.
(https://www.boostcourse.org/)