📖 Early Stopping
- Note that we need additional validation data to do early stopping.
![](https://velog.velcdn.com/images/araseo/post/3ff1570b-473a-4d9c-94b5-5f4a2f5d3bbc/image.png)
📖 Parameter Norm Penalty
- It adds smoothness to the function space.
![](https://velog.velcdn.com/images/araseo/post/ad89b904-2143-4160-bc78-5c3c60f9d884/image.png)
📖 Data Augmentation
-
More data are always welcomed.
![](https://velog.velcdn.com/images/araseo/post/8120f072-ad33-484b-91fc-5c28b134fbdf/image.png)
-
However, in most cases, training data are given in advance.
-
In such cases, we need data augmentation.
![](https://velog.velcdn.com/images/araseo/post/c1f12cbf-29c3-4875-a121-b0b4c38dda25/image.png)
📖 Noise Robustness
- Add random noises inputs or weights.
![](https://velog.velcdn.com/images/araseo/post/8c2e5183-9d70-4b47-a1f0-1d917a3dc965/image.png)
📖 Label Smoothing
- Mix-up constructs augmented training examples by mixing both input and output of two randomly selected training data.
![](https://velog.velcdn.com/images/araseo/post/d02da279-c1dd-4c52-ac7d-8851dc9a57fc/image.png)
- CutMix constructs augmented training examples by mixing inputs with cut and paste and outputs with soft labels of two randomly selected training data.
![](https://velog.velcdn.com/images/araseo/post/7595511e-1baa-4b6c-b7fe-b9609e4d88a1/image.png)
📖 Dropout
- In each forward pass, randomly set some neurons to zero.
![](https://velog.velcdn.com/images/araseo/post/49c54cdc-1487-4eeb-99f4-1b432acae4c6/image.png)
📖 Batch Normalization
- Batch normalization compute the empirical mean and variance independently for each dimension (layers) and normalize.
![](https://velog.velcdn.com/images/araseo/post/82e70bc4-16a9-405d-a605-9b9e709fb25b/image.png)
- There are different variances of normalizations.
![](https://velog.velcdn.com/images/araseo/post/deab9edb-85f8-485f-950e-11d244d2c344/image.png)
<이 게시물은 최성준 교수님의 'Regularization' 강의 자료를 참고하여 작성되었습니다.>
본 포스트의 학습 내용은 [부스트캠프 AI Tech 5기] Pre-Course 강의 내용을 바탕으로 작성되었습니다.
부스트캠프 AI Tech 5기 Pre-Course는 일정 기간 동안에만 운영되는 강의이며,
AI 관련 강의를 학습하고자 하시는 분들은 부스트코스 AI 강좌에서 기간 제한 없이 학습하실 수 있습니다.
(https://www.boostcourse.org/)