Ex1) EDA

Jacob Kim·2024년 2월 1일
0

Naver Project Week4

목록 보기
2/16
!pip install konlpy
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting konlpy
  Downloading konlpy-0.6.0-py2.py3-none-any.whl (19.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.4/19.4 MB 8.7 MB/s eta 0:00:00
Requirement already satisfied: lxml>=4.1.0 in /usr/local/lib/python3.10/dist-packages (from konlpy) (4.9.2)
Requirement already satisfied: numpy>=1.6 in /usr/local/lib/python3.10/dist-packages (from konlpy) (1.22.4)
Collecting JPype1>=0.7.0
  Downloading JPype1-1.4.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (465 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 465.3/465.3 kB 12.2 MB/s eta 0:00:00
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from JPype1>=0.7.0->konlpy) (23.1)
Installing collected packages: JPype1, konlpy
Successfully installed JPype1-1.4.1 konlpy-0.6.0
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from collections import Counter

from konlpy.tag import Okt

from functools import reduce
from wordcloud import WordCloud
DATA_IN_PATH = './'
data = pd.read_csv(DATA_IN_PATH + 'ChatBotData.csv', encoding='utf-8')
data

print(data.head())
                 Q            A  label
0           12시 땡!   하루가 또 가네요.      0
1      1지망 학교 떨어졌어    위로해 드립니다.      0
2     34일 놀러가고 싶다  여행은 언제나 좋죠.      0
3  34일 정도 놀러가고 싶다  여행은 언제나 좋죠.      0
4          PPL 심하네   눈살이 찌푸려지죠.      0
sentences = list(data['Q']) + list(data['A'])
tokenized_sentences = [s.split() for s in sentences]
sent_len_by_token = [len(t) for t in tokenized_sentences]
sent_len_by_eumjeol = [len(s.replace(' ', '')) for s in sentences]

okt = Okt()

morph_tokenized_sentences = [okt.morphs(s.replace(' ', '')) for s in sentences]
sent_len_by_morph = [len(t) for t in morph_tokenized_sentences]
plt.figure(figsize=(12, 5))
plt.hist(sent_len_by_token, bins=50, range=[0,50], alpha=0.5, color= 'r', label='eojeol')
plt.hist(sent_len_by_morph, bins=50, range=[0,50], alpha=0.5, color='g', label='morph')
plt.hist(sent_len_by_eumjeol, bins=50, range=[0,50], alpha=0.5, color='b', label='eumjeol')
plt.title('Sentence Length Histogram')
plt.xlabel('Sentence Length')
plt.ylabel('Number of Sentences')

plt.figure(figsize=(12, 5))
plt.hist(sent_len_by_token, bins=50, range=[0,50], alpha=0.5, color= 'r', label='eojeol')
plt.hist(sent_len_by_morph, bins=50, range=[0,50], alpha=0.5, color='g', label='morph')
plt.hist(sent_len_by_eumjeol, bins=50, range=[0,50], alpha=0.5, color='b', label='eumjeol')
plt.yscale('log')
plt.title('Sentence Length Histogram by Eojeol Token')
plt.xlabel('Sentence Length')
plt.ylabel('Number of Sentences')

print('어절 최대길이: {}'.format(np.max(sent_len_by_token)))
print('어절 최소길이: {}'.format(np.min(sent_len_by_token)))
print('어절 평균길이: {:.2f}'.format(np.mean(sent_len_by_token)))
print('어절 길이 표준편차: {:.2f}'.format(np.std(sent_len_by_token)))
print('어절 중간길이: {}'.format(np.median(sent_len_by_token)))
print('제 1 사분위 길이: {}'.format(np.percentile(sent_len_by_token, 25)))
print('제 3 사분위 길이: {}'.format(np.percentile(sent_len_by_token, 75)))
어절 최대길이: 21
어절 최소길이: 1
어절 평균길이: 3.64
어절 길이 표준편차: 1.74
어절 중간길이: 3.01 사분위 길이: 2.03 사분위 길이: 5.0
print('형태소 최대길이: {}'.format(np.max(sent_len_by_morph)))
print('형태소 최소길이: {}'.format(np.min(sent_len_by_morph)))
print('형태소 평균길이: {:.2f}'.format(np.mean(sent_len_by_morph)))
print('형태소 길이 표준편차: {:.2f}'.format(np.std(sent_len_by_morph)))
print('형태소 중간길이: {}'.format(np.median(sent_len_by_morph)))
print('형태소 1/4 퍼센타일 길이: {}'.format(np.percentile(sent_len_by_morph, 25)))
print('형태소 3/4 퍼센타일 길이: {}'.format(np.percentile(sent_len_by_morph, 75)))
형태소 최대길이: 31
형태소 최소길이: 1
형태소 평균길이: 5.41
형태소 길이 표준편차: 2.56
형태소 중간길이: 5.0
형태소 1/4 퍼센타일 길이: 4.0
형태소 3/4 퍼센타일 길이: 7.0
print('음절 최대길이: {}'.format(np.max(sent_len_by_eumjeol)))
print('음절 최소길이: {}'.format(np.min(sent_len_by_eumjeol)))
print('음절 평균길이: {:.2f}'.format(np.mean(sent_len_by_eumjeol)))
print('음절 길이 표준편차: {:.2f}'.format(np.std(sent_len_by_eumjeol)))
print('음절 중간길이: {}'.format(np.median(sent_len_by_eumjeol)))
print('음절 1/4 퍼센타일 길이: {}'.format(np.percentile(sent_len_by_eumjeol, 25)))
print('음절 3/4 퍼센타일 길이: {}'.format(np.percentile(sent_len_by_eumjeol, 75)))
음절 최대길이: 57
음절 최소길이: 1
음절 평균길이: 11.31
음절 길이 표준편차: 4.98
음절 중간길이: 10.0
음절 1/4 퍼센타일 길이: 8.0
음절 3/4 퍼센타일 길이: 14.0
plt.figure(figsize=(12, 5))
plt.boxplot([sent_len_by_token, sent_len_by_morph, sent_len_by_eumjeol],
            labels=['Eojeol', 'Morph', 'Eumjeol'], 
            showmeans=True)

query_sentences = list(data['Q'])
answer_sentences = list(data['A'])

query_morph_tokenized_sentences = [okt.morphs(s.replace(' ', '')) for s in query_sentences]
query_sent_len_by_morph = [len(t) for t in query_morph_tokenized_sentences]

answer_morph_tokenized_sentences = [okt.morphs(s.replace(' ', '')) for s in answer_sentences]
answer_sent_len_by_morph = [len(t) for t in answer_morph_tokenized_sentences]
plt.figure(figsize=(12, 5))
plt.hist(query_sent_len_by_morph, bins=50, range=[0,50], color='g', label='Query')
plt.hist(answer_sent_len_by_morph, bins=50, range=[0,50], color='r', alpha=0.5, label='Answer')
plt.legend()
plt.title('Query Length Histogram by Morph Token')
plt.xlabel('Query Length')
plt.ylabel('Number of Queries')

plt.figure(figsize=(12, 5))
plt.hist(query_sent_len_by_morph, bins=50, range=[0,50], color='g', label='Query')
plt.hist(answer_sent_len_by_morph, bins=50, range=[0,50], color='r', alpha=0.5, label='Answer')
plt.legend()
plt.yscale('log')
plt.title('Query Length Log Histogram by Morph Token')
plt.xlabel('Query Length')
plt.ylabel('Number of Queries')

print('형태소 최대길이: {}'.format(np.max(query_sent_len_by_morph)))
print('형태소 최소길이: {}'.format(np.min(query_sent_len_by_morph)))
print('형태소 평균길이: {:.2f}'.format(np.mean(query_sent_len_by_morph)))
print('형태소 길이 표준편차: {:.2f}'.format(np.std(query_sent_len_by_morph)))
print('형태소 중간길이: {}'.format(np.median(query_sent_len_by_morph)))
print('형태소 1/4 퍼센타일 길이: {}'.format(np.percentile(query_sent_len_by_morph, 25)))
print('형태소 3/4 퍼센타일 길이: {}'.format(np.percentile(query_sent_len_by_morph, 75)))
형태소 최대길이: 20
형태소 최소길이: 1
형태소 평균길이: 4.95
형태소 길이 표준편차: 2.48
형태소 중간길이: 4.0
형태소 1/4 퍼센타일 길이: 3.0
형태소 3/4 퍼센타일 길이: 6.0
print('형태소 최대길이: {}'.format(np.max(answer_sent_len_by_morph)))
print('형태소 최소길이: {}'.format(np.min(answer_sent_len_by_morph)))
print('형태소 평균길이: {:.2f}'.format(np.mean(answer_sent_len_by_morph)))
print('형태소 길이 표준편차: {:.2f}'.format(np.std(answer_sent_len_by_morph)))
print('형태소 중간길이: {}'.format(np.median(answer_sent_len_by_morph)))
print('형태소 1/4 퍼센타일 길이: {}'.format(np.percentile(answer_sent_len_by_morph, 25)))
print('형태소 3/4 퍼센타일 길이: {}'.format(np.percentile(answer_sent_len_by_morph, 75)))
형태소 최대길이: 31
형태소 최소길이: 1
형태소 평균길이: 5.87
형태소 길이 표준편차: 2.55
형태소 중간길이: 5.0
형태소 1/4 퍼센타일 길이: 4.0
형태소 3/4 퍼센타일 길이: 7.0
okt.pos('오늘밤은유난히덥구나')
[('오늘밤', 'Noun'), ('은', 'Josa'), ('유난히', 'Adverb'), ('덥구나', 'Adjective')]
query_NVA_token_sentences = list()
answer_NVA_token_sentences = list()

for s in query_sentences:
    for token, tag in okt.pos(s.replace(' ', '')):
        if tag == 'Noun' or tag == 'Verb' or tag == 'Adjective':
            query_NVA_token_sentences.append(token)

for s in answer_sentences:
    temp_token_bucket = list()
    for token, tag in okt.pos(s.replace(' ', '')):
        if tag == 'Noun' or tag == 'Verb' or tag == 'Adjective':
            answer_NVA_token_sentences.append(token)
            
query_NVA_token_sentences = ' '.join(query_NVA_token_sentences)
answer_NVA_token_sentences = ' '.join(answer_NVA_token_sentences)
query_wordcloud = WordCloud(font_path= DATA_IN_PATH + 'NanumGothic.ttf').generate(query_NVA_token_sentences)

plt.imshow(query_wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()

query_wordcloud = WordCloud(font_path= DATA_IN_PATH + 'NanumGothic.ttf').generate(answer_NVA_token_sentences)

plt.imshow(query_wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()

profile
AI, Information and Communication, Electronics, Computer Science, Bio, Algorithms

0개의 댓글

관련 채용 정보