01. Margin, Hard Margin Linear SVMSupport Vector Machine (SVM)
Separating Hyperplane


Geometric Margin





Convex Optimization Problem
Lagrangian Formulation



Lagrangian Dual




Characteristic of the Solutions



Classifying New Data Points

02. Soft Margin SVM, Nonlinear SVM, KernelLinearly Nonseperable Problems


Convex Optimization Formulation
Soft Margin SVM Classifiers

Lagrangian Formulation

Lagrangian Dual



Characteristics of the Solution

Soft Margin SVM Classifiers
Kernel Methods for Nonlinear ClassificationNonlinear Decision Boundary
Transforming Data

Transforming Data - Exmaple

Mapping Original Space to Kernel Space
Kernel Mapping



Kernel Mapping - Example
Kernel Functions
Example of Nonlinear SVM Using Kernel Function

Choosing Kernel Functions
Nonlinear(Kernel) SVM Classifiers
Linear vs Nonlinear SVM Classifiers
[핵심 머신러닝] SVM 모델 1 (Margin, Hard Margin Linear SVM)
[핵심 머신러닝] SVM 모델 2 (Soft Margin SVM, Nonlinear SVM, Kernel) by 김성범 교수 강의자료 참고