01. Margin, Hard Margin Linear SVM
Support Vector Machine (SVM)
Separating Hyperplane
Geometric Margin
Convex Optimization Problem
Lagrangian Formulation
Lagrangian Dual
Characteristic of the Solutions
Classifying New Data Points
02. Soft Margin SVM, Nonlinear SVM, Kernel
Linearly Nonseperable Problems
Convex Optimization Formulation
Soft Margin SVM Classifiers
Lagrangian Formulation
Lagrangian Dual
Characteristics of the Solution
Soft Margin SVM Classifiers
Kernel Methods for Nonlinear Classification
Nonlinear Decision Boundary
Transforming Data
Transforming Data - Exmaple
Mapping Original Space to Kernel Space
Kernel Mapping
Kernel Mapping - Example
Kernel Functions
Example of Nonlinear SVM Using Kernel Function
Choosing Kernel Functions
Nonlinear(Kernel) SVM Classifiers
Linear vs Nonlinear SVM Classifiers
[핵심 머신러닝] SVM 모델 1 (Margin, Hard Margin Linear SVM)
[핵심 머신러닝] SVM 모델 2 (Soft Margin SVM, Nonlinear SVM, Kernel) by 김성범 교수 강의자료 참고