Support Vector Machine

Jacob Kim·2024년 1월 13일
0

ML

목록 보기
9/11
post-custom-banner

01. Margin, Hard Margin Linear SVM

Support Vector Machine (SVM)

Separating Hyperplane



Geometric Margin






Convex Optimization Problem

Lagrangian Formulation




Lagrangian Dual





Characteristic of the Solutions




Classifying New Data Points


02. Soft Margin SVM, Nonlinear SVM, Kernel

Linearly Nonseperable Problems



Convex Optimization Formulation

Soft Margin SVM Classifiers


Lagrangian Formulation


Lagrangian Dual




Characteristics of the Solution


Soft Margin SVM Classifiers

Kernel Methods for Nonlinear Classification

Nonlinear Decision Boundary

Transforming Data


Transforming Data - Exmaple


Mapping Original Space to Kernel Space

Kernel Mapping




Kernel Mapping - Example

Kernel Functions

Example of Nonlinear SVM Using Kernel Function


Choosing Kernel Functions

Nonlinear(Kernel) SVM Classifiers

Linear vs Nonlinear SVM Classifiers

[핵심 머신러닝] SVM 모델 1 (Margin, Hard Margin Linear SVM)
[핵심 머신러닝] SVM 모델 2 (Soft Margin SVM, Nonlinear SVM, Kernel) by 김성범 교수 강의자료 참고

profile
AI, Information and Communication, Electronics, Computer Science, Bio, Algorithms
post-custom-banner

0개의 댓글