OpenPCDet 환경세팅

Speedwell🍀·2022년 10월 19일
Ubuntu 18.04
📌설치할 때 Normal 말고 Minimal installation 선택

1. Nvidia Driver 설치

  • Software & Updates > Additional Drivers 에서 아래 드라이버 선택

    Using NVIDA driver metapackage from nvidia-driver-510 (proprietary)

  • Apply Changes 누르고 Restart
  • 터미널에서 nvidia-smi 명령어 입력해서 잘 출력되는지 확인하기

2. Anaconda 설치

Anaconda | Anaconda Distribution


3. CUDA 11.3 설치

CUDA Toolkit 11.3 Update 1 Downloads

📌 runfile로 설치하기

📌 꼭 Driver 선택해제!

  • 환경변수
sudo gedit ~/.bashrc
export CUDA_HOME=/usr/local/cuda-11.3
export PATH=/usr/local/cuda-11.3/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH
source ~/.bashrc
  • nvcc -V 명령어 입력하면 CUDA 11.3 잘 설치되었는지 확인 가능
    • nvidia-smi에서는 CUDA 버전 다르게 나오는데 무시해도 됨

4. cuDNN 8.2.1 설치

Nvidia 로그인해야 다운로드 가능. cuDNN Archive에서 다운로드 받기

tar –xzvf cudnn-11.3-linux-x64-v8.2.1.32.tgz
sudo cp cuda/include/cudnn* /usr/local/cuda-11.3/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.3/lib64
sudo chmod a+r /usr/local/cuda-11.3/include/cudnn.h /usr/local/cuda-11.3/lib64/libcudnn*
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn.so.8
sudo ldconfig
ldconfig -N -v $(sed 's/:/ /' <<< $LD_LIBRARY_PATH) 2>/dev/null | grep libcudnn

아래 명령어 입력하면 cudnn 잘 설치되었는지 확인 가능

cat /usr/local/cuda-11.3/include/cudnn_version.h

5. OpenPCDet

sudo apt install git
git clone https://github.com/open-mmlab/OpenPCDet.git
conda create -n OpenPCDet python=3.9
conda activate OpenPCDet
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install spconv-cu113
pip install -r requirements.txt
python setup.py develop

6. OpenPCDet Test

  • OpenPCDet 깃허브에서 PV-RCNN 모델 다운로드

    OpenPCDet/tools/cfgs/kitti_models/ 안에 넣기

  • Kitti Dataset 다운로드

    하이라이트해둔 4개 다운로드

    OpenPCDet/Data/kitti/ 안에 넣기

cd OpenPCDet/tools
python demo.py --cfg_file cfgs/kitti_models/pv_rcnn.yaml --ckpt pv_rcnn_8369.pth --data_path /home/smha/OpenPCDet/data/kitti/training/velodyne/000000.bin

1개의 댓글

comment-user-thumbnail
2022년 10월 20일

감사합니다

답글 달기