Ubuntu 18.04
📌설치할 때 Normal 말고 Minimal installation 선택
Software & Updates > Additional Drivers 에서 아래 드라이버 선택Using NVIDA driver metapackage from nvidia-driver-510 (proprietary)
Apply Changes 누르고 RestartAnaconda | Anaconda Distribution
bash ~/Downloads/Anaconda3-2022.05-Windows-x86_64.shCUDA Toolkit 11.3 Update 1 Downloads



sudo gedit ~/.bashrc
export CUDA_HOME=/usr/local/cuda-11.3
export PATH=/usr/local/cuda-11.3/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH
source ~/.bashrc
nvcc -V 명령어 입력하면 CUDA 11.3 잘 설치되었는지 확인 가능Nvidia 로그인해야 다운로드 가능. cuDNN Archive에서 다운로드 받기
tar –xzvf cudnn-11.3-linux-x64-v8.2.1.32.tgz
sudo cp cuda/include/cudnn* /usr/local/cuda-11.3/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.3/lib64
sudo chmod a+r /usr/local/cuda-11.3/include/cudnn.h /usr/local/cuda-11.3/lib64/libcudnn*
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
sudo ln -sf /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn.so.8.2.1 /usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn.so.8
sudo ldconfig
ldconfig -N -v $(sed 's/:/ /' <<< $LD_LIBRARY_PATH) 2>/dev/null | grep libcudnn
아래 명령어 입력하면 cudnn 잘 설치되었는지 확인 가능
cat /usr/local/cuda-11.3/include/cudnn_version.h
sudo apt install git
git clone https://github.com/open-mmlab/OpenPCDet.git
conda create -n OpenPCDet python=3.9
conda activate OpenPCDet
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install spconv-cu113
pip install -r requirements.txt
python setup.py develop
OpenPCDet 깃허브에서 PV-RCNN 모델 다운로드

OpenPCDet/tools/cfgs/kitti_models/ 안에 넣기
Kitti Dataset 다운로드

하이라이트해둔 4개 다운로드
OpenPCDet/Data/kitti/ 안에 넣기
cd OpenPCDet/tools
python demo.py --cfg_file cfgs/kitti_models/pv_rcnn.yaml --ckpt pv_rcnn_8369.pth --data_path /home/smha/OpenPCDet/data/kitti/training/velodyne/000000.bin
감사합니다