[P&R] 0. Set Theory

Bumjin Kim·2023년 9월 20일
0

확률변수론

목록 보기
1/5
post-thumbnail

Definition

"A set" is defined as a collection of elements.

Ex) Tossing a coin twice

  • Condition : Coin has two cases, have head or tail

U = {HH, HT, TH, HH} ~ Universal Set (Set of all cases)

A set = {HH, HT} ~ Subset A (Head at the 1st toss case)

B set = {TH, HT} ~ Subset B (Only one Head)

■ Set Operation

  • ABA ⊂ B ~ A is a subset of B
  • For any A, A⌀ ⊂ A, ⌀ ⊂ ⌀, AAA ⊂ A (A can be subset of A)
  • If ABA ⊂ B and BCB ⊂ C, Then ACA ⊂ C
  • A=BA = B if and only if (a.k.a iff) ABA ⊂ B and BAB ⊂ A
  • Union ~ ABA ∪ B (It called A cup B) ≈ A+BA + B ( A or B)
  • Intersection ~ ABA ∩ BABAB

[Reference]

  • ABA ∪ B has commutative and associative law
  • ABA ∩ B has commutative, associative, distributive law

■ Mutually Exclusive Sets

  • Sets A and B are said to be mutually exclusive iff Ab=Ab = ⌀
  • Sets A1,A2,A3,....,AnA_1, A_2, A_3, .... , A_n are said to be mutually exclusive iff not have intersection

    AiAj=,ijA_iA_j = ⌀, ⩝ i ≠ j

■ Partition

  • Partition S of a set U is a collection of sets {A1,A2,A3,.....,AnA_1, A_2, A_3, ....., A_n}

A1A2A3...An=UA_1 ∪ A_2 ∪ A_3 ∪ ... ∪ A_n = U

AiAj=,ijA_iA_j = ⌀, ⩝ i ≠ j

■ Complements of AA ~ AcA^c

  • AAc=UA ∪ A^c = U
  • AAc=AA^c = ⌀ ( A∵ A and AcA^c are partiion of U)
  • (Ac)c(A^c)^c = A
  • Uc=U^c = ⌀
  • c=U⌀^c = U

■ DeMorgan's Law

  • (AB)c=AcBc(A ∪ B)^c = A^c ∩ B^c
  • (AB)c=AcBc(A ∩ B)^c = A^c ∪ B^c

본 글은 HGU 2023-2 확률변수론 이준용 교수님의 수업 필기 내용을 요약한 글입니다.

profile
코딩 꿈나무

0개의 댓글

관련 채용 정보