[P&R] 03. Two Random Variables(1)

Bumjin Kim·2023년 10월 26일
0

확률변수론

목록 보기
5/5
post-thumbnail

■ Joint Density & Distribution

- Joint statistics simply means the statistics of two or more random variables.

- In the discussion of joint statistics, we are interested in the intersection of events.


■ Joint PMF (In 1 random variable, PX(x)=P[X=x]P_X(x) = P[X = x])

  • PXY(x,y)=P[X=x,Y=y]P_{XY}(x , y) = P[ X=x, Y = y]

  • xyPXY(x,y)=1\sum_x \sum_y P_{XY}(x,y) = 1

  • PX(x)=yPXY(x,y)P_X(x) = \sum_y P_{XY}(x, y)

  • PY(y)=xPXY(x,y)P_Y(y) = \sum_x P_{XY}(x, y)

  • PXY(xy)=P[X=xY=y]=P(X=x,Y=y)P(Y=y)=PXY(x,y)PY(y)P_{X|Y}(x|y) = P[X=x | Y=y] = \frac{P(X=x, Y=y)}{P(Y=y)} = \frac{P_{XY}(x,y)}{P_Y(y)}

  • xPXY(x,y)=xPXY(x,y)PY(y)=1PY(y)×xPXY(x,y)=1\sum_x P_{X|Y}(x,y) = \sum_x\frac{P_{XY(x,y)}}{P_Y(y)} = \frac{1}{P_Y(y)} \times \sum_x P_{XY}(x,y) = 1 (xPXY(x,y)=PY(y))(∵\sum_x P_{XY}(x,y) = P_Y(y))


■ Joint PDF ~ fXY(x,y)f_{XY}(x,y)

  • P[(X,Y)S]=(x,y)IfXY(x,y)P[(X, Y) \in S] = \int\int_{(x,y)\in I} f_{XY}(x, y) dxdydxdy
  • fXY(x,y)\int_{-\infin}^\infin \int_{-\infin}^\infin f_{XY}(x,y) dxdydxdy
  • P[xXx+δ,yYy+δ]P[X=x,Y=y]fXY(x,y)×δ2P[x \le X \le x + \delta, y \le Y \le y + \delta] \approx P[X=x, Y=y] \approx f_{XY}(x, y)\times \delta^2
  • fX(x)=fXY(x,y)f_X(x) = \int_{-\infin}^\infin f_{XY}(x,y) dydy
  • fY(y)=fXY(x,y)f_Y(y) = \int_{-\infin}^\infin f_{XY}(x,y) dxdx

■ Joint Distribution

  • Joint distribution of random variables XX and YY is defined as fXY(x,y)=δ2δxδyFXY(x,y)f_{XY}(x,y) = \frac{\delta^2}{\delta x \delta y} F_{XY}(x, y)
    FXY(x,y)=P{Xx,Yy}F_{XY}(x,y) = P\{X \le x, Y\le y\}

■ Properties

  • FXY(,y)=P{X,Yy}=0F_{XY}(-\infin, y) = P \{X \le -\infin, Y \le y\} = 0
    FXY(x,)=P{X,Yy}=0F_{XY}(x, -\infin) = P \{X \le -\infin, Y \le y\} = 0
    FXY(,)=P{X,Yy}=1F_{XY}(\infin, \infin) = P \{X \le -\infin, Y \le y\} = 1
  • Assume that x2>x1,x_2>x_1, FXY(x2,y)FXY(x1,y)=P{x1Xx2,F_{XY}(x_2,y) - F_{XY}(x_1,y) = P\{x_1\le X \le x_2 , Yy}Y \le y\}
  • Assume that y2>y1,y_2>y_1, FXY(x,y2)FXY(x,y1)=P{Xx,F_{XY}(x,y_2) - F_{XY}(x,y_1) = P\{X \le x, y1Yy2}y_1\le Y \le y_2\}
  • fXY(x,y)=ddxdyFXY(x,y)f_{XY}(x,y) = \frac{d}{dxdy} F_{XY}(x,y)
  • FXY(x,y)=xyfXY(α,β)dαdβF_{XY}(x,y) = \int_{-\infin}^x \int_{-\infin}^y f_{XY}(\alpha, \beta)d\alpha d\beta
  • In comparison with joint distiribution (or joint density), the distribution of each random variable is called "marginal distribution (or density)."
  • FX(x)=P{Xx}=P{Xx,y}=FXY(x,)F_X(x) = P\{X \le x\} = P\{X \le x , y \le \infin\} = F_{XY}(x, \infin)
  • FY(y)=FXY(,y)F_Y(y) = F_{XY}(\infin, y)
  • fX(x)=fXY(x,y)f_X(x) = \int_{-\infin}^\infin f_{XY}(x,y) dydy
  • fY(y)=fXY(x,y)f_Y(y) = \int_{-\infin}^\infin f_{XY}(x,y) dxdx

■ Independent random variables

1) Discrete random variables X,Y,ZX, Y, Z are said to be independent iff PXYZ(x,y,z)=PX(x)×PY(y)×PZ(z)P_{XYZ}(x, y, z) = P_X(x) \times P_Y(y) \times P_Z(z)
Because "Joint Probability mass function" has to be equal to product of, marginal product of function.

  • Also we need to satisfy other condition, PXY(x,y)=PX(x)×PY(y)P_{XY}(x,y) = P_X(x)\times P_Y(y) \dots
    However, we just get a 1 condition(PXYZ(x,y,z)=PX(x)×PY(y)×PZ(z)P_{XYZ}(x, y, z) = P_X(x) \times P_Y(y) \times P_Z(z)) -> satisfy the others condition.

    Let's suppose ZPXYZ(x,y,z)ZPX(x)×PY(y)×PZ(z)PXY(x,y)=PX(x)×PY(y)×ZPZ(z)\sum_Z P_{XYZ}(x, y, z) \\ \Leftrightarrow \sum_Z P_X(x) \times P_Y(y) \times P_Z(z) \\ \Leftrightarrow P_{XY}(x, y) = P_X(x) \times P_Y(y) \times \sum_Z P_Z(z) (ZPZ(z)=1)(\sum_Z P_Z(z) =1)
    Therefore, It can prove others just as 1 conditions.

2) Continouous random variables X,Y,ZX, Y, Z are said to be independent iff
fXYZ(x,y,z)=fX(x)×fY(y)×fZ(z)\Leftrightarrow f_{XYZ}(x,y,z) = f_X(x) \times f_Y(y) \times f_Z(z)
FXYZ(x,y,z)=FX(x)×FY(y)×FZ(z)\Leftrightarrow F_{XYZ}(x, y, z) = F_X(x) \times F_Y(y) \times F_Z(z)
\Leftrightarrow Events {uX(u)x},{uY(u)y},{uZ(u)z}areindependent\{u | X(u) \le x\}, \{u | Y(u) \le y\}, \{u | Z(u) \le z\} are independent

Independence of RV X, Y, and Z is exactly same as independence of events {Xx},{Yy},{Zz}.\{X \le x\}, \{Y \le y\}, \{Z \le z\}.
Each of these events is acutally collection of sample points which is satisfied above condition.

✏️ Buffons needle example


■ Conditioning

Recall that

  • PXY(xy)=PXY(x,y)PY(y)P_{X|Y}(x|y) = \frac{P_{XY}(x,y)}{PY(y)}
  • P(xXx+δ)fX(x)×δP(x \le X \le x + \delta) \approx f_X(x) \times \delta

Similarly, let's consider the following probability:

  • P(xXx+δyYy+δ)P[xXx+δ,yYy+δ]P[yYy+δ]fXY(x,y)×δ2fY(y)×δP(x \le X \le x+\delta | y \le Y \le y+\delta) \\ \approx \frac{P[x \le X \le x+\delta, y \le Y \le y+\delta]}{P[y \le Y \le y+\delta]} \approx \frac{f_{XY}(x,y) \times \delta^2}{f_Y(y) \times \delta}=fXY(x,y)fY(y)×δ=\frac{f_{XY}(x,y)}{f_Y(y)} \times \delta

  • fXY(xy)=fXY(xY=y)=fXY(x,y)fY(y)f_{X|Y}(x|y) = f_{X|Y}(x|Y = y) = \frac{f_{XY}(x, y)}{f_Y(y)}
    (The difference that above equation is δ\delta.)

  • If XX and YY are independent, fXY(xy)=fX(x)f_{X|Y}(x|y) = f_X(x)

🚨Cf) fXY(xy)\int_{-\infin}^\infin f_{X|Y}(x|y) dx=1dx = 1 is not indicated below pic.


Therefore, it can not be above pic.
Because, according to the y, the result is changed not a 1.
Then, how can we find that density??
\Rightarrow Make an area to 1 using normalization.
fXY(x,0)fY(0)=fXY(x0)\frac{f_{XY}(x,0)}{f_Y(0)} = f_{X|Y}(x|0)

✏️ Stick-breaking example

Assumption

  • Break a stick of length ll twice.

  • Break at XX which is uniform in [0,l];[0,l]; then break again at YY whcih is uniform in [0,X][0,X]

  • E[YX=x]=x/2E[Y|X = x] = x/2 (fYX(yx)(∵ f_{Y|X}(y|x)'s center of gravity)

  • fXY(x,y)=fYX(yx)×fX(x)=1lxf_{XY}(x,y) = f_{Y|X}(y|x) \times f_X(x) = \frac{1}{lx} ,(0yxl),(0 \le y \le x \le l)

  • fY(y)=ylfXY(x,y)f_Y(y) = \int_{y}^l f_{XY}(x,y) dxdx

  • fX(x)=0xfXY(x,y)f_X(x) = \int_0^x f_{XY}(x, y) dydy =0x1lx= \int_0^x \frac{1}{lx} dydy
    1/l,(0xl)∴ 1/l, (0 \le x \le l)

  • E[Y]=0ly×1l×lnlyE[Y] = \int_0^l y \times \frac{1}{l} \times ln^{\frac{l}{y}} dydy =l4= \frac{l}{4}

✏️ Another example

  • Determine fYX(yx)f_{Y|X}(y|x) and fXY(xy)f_{X|Y}(x|y)

■ Expectations

  • E[X]=x×fX(x)E[X] = \int_{-\infin}^\infin x \times f_X(x) dxdx
  • E[g(X)]=g(x)×fX(x)E[g(X)] = \int_{-\infin}^\infin g(x) \times f_X(x) dxdx
  • E[g(X)A]=g(x)×fXA(xA)E[g(X)|A] = \int_{-\infin}^\infin g(x) \times f_{X|A}(x|A) dxdx
  • E[X]=xfXY(x,y)dyE[X] = \int_{-\infin}^\infin x \int_{-\infin}^\infin f_{XY}(x, y)dy dx=x×fXY(x,y)dx = \int_{-\infin}^\infin \int_{-\infin}^\infin x \times f_{XY}(x,y) $dxdy
  • E[g(X,Y)]=g(X,Y)×fXY(x,y)E[g(X, Y)] = \int_{-\infin}^\infin \int_{-\infin}^\infin g(X, Y) \times f_{XY}(x,y) dxdydxdy
  • E[g(X,Y)A]=g(X,Y)×fXYA(x,yA)E[g(X,Y) | A]= \int_{-\infin}^\infin \int_{-\infin}^\infin g(X,Y) \times f_{XY|A}(x,y|A) dxdydxdy
  • E[XY=y]=x×fXY(xy)E[X|Y = y] = \int_{-\infin}^\infin x \times f_{X|Y}(x|y) dxdx
  • E[X]=E[XY=y]×fY(y)E[X] = \int_{-\infin}^\infin E[X|Y=y] \times f_Y(y) dydy

    proof)
    E[X]=x×fX(x)E[X] = \int_{-\infin}^\infin x \times f_X(x) dxdx
    xfXY(x,y)\Leftrightarrow \int_{-\infin}^\infin x \int_{-\infin}^\infin f_{XY}(x,y) dxdydxdy
    x×fXY(x,y)\Leftrightarrow \int_{-\infin}^\infin \int_{-\infin}^\infin x \times f_{XY}(x, y) dxdydxdy
    x×fXY(xy)×fY(y)\Leftrightarrow \int_{-\infin}^\infin \int_{-\infin}^\infin x \times f_{X|Y}(x|y) \times f_Y(y) dxdydx dy
    fY(y)×E[XY=y]\Leftrightarrow \int_{-\infin}^\infin f_Y(y) \times E[X|Y=y] dydy

We can indicates fY(y)×E[XY=y]\int_{-\infin}^\infin f_Y(y) \times E[X|Y=y] dydy to the g(Y)g(Y)
Here, E[XY=y]E[X|Y=y] can be regarded as a random variable, being denoted by E[XY]E[X|Y]
E[X]=E[E[XY]]∴E[X] = E[E[X|Y]], (Notice that inner expectation is about the X and Outer is about the Y)

✏️ Stick braking example (The range is 0yxl0 \le y \le x \le l)

We know that E[YX=x]=x2E[Y|X =x ] = \frac{x}{2}.
And we can assume that E[YX]=g(X)=x/2E[Y|X] = g(X) = x/2.

E[Y]=EX[EY[YX]],E[Y] = E_X[E_Y[Y|X] ], (we prove this above)
We can easily think E[g(X)]=g(x)×fx(x)E[g(X)] = \int_{-\infin}^\infin g(x) \times f_x(x) dxdx.
Therefore, the expansion of above equation, x2×fX(x)\int_{-\infin}^\infin \frac{x}{2} \times f_X(x) dxdx
0lx2×1l\Leftrightarrow \int_{0}^l \frac{x}{2} \times \frac{1}{l} dxdx
l/4l/4


본 글은 HGU 2023-2 확률변수론 이준용 교수님의 수업 필기 내용을 요약한 글입니다.

profile
코딩 꿈나무

0개의 댓글

관련 채용 정보