프로세스

코린이·2022년 4월 10일
0

기초 지식

목록 보기
2/3

프로세스와 스레드의 차이

프로세스

프로세스는 실행 중인 프로그램으로 디스크로부터 메모리에 적재되어 CPU의 할당을 받을 수 있는 것을 말한다.

프로세스 제어블록

PCB는 특정 프로세스에 대한 중요성을 저장 하고 있는 운영 체제의 자료구조이다. 운영체제는 프로세스를 관리하기 위해 프로세스의 생성과 동시에 고유한 PCB를 생성한다.

PCB 에 저장되는 정보

  • 프로세스 식별자(Process ID, PID) : 프로세스 식별번호
  • 프로세스 상태 : new, ready, running, waiting, terminated 등의 상태를 저장
  • 프로그램 카운터 : 프로세스가 다음에 실행할 명령어의 주소
  • CPU 레지스터
  • CPU 스케쥴링 정보 : 프로세스의 우선순위, 스케줄 큐에 대한 포인터 등
  • 메모리 관리 정보 : 페이지 테이블 또는 세그먼트 테이블 등과 같은 정보를 포함
  • 입출력 상태 정보 : 프로세스에 할당된 입출력 장치들과 열린 파일 목록
  • 어카운팅 정보 : 사용된 CPU 시간, 시간제한, 계정번호 등

스레드(Thread)

스레드는 프로세스의 실행 단위라고 할 수 있다. 한 프로세스 내에서 동작되는 여러 실행 흐름으로 프로세스 내의 주소 공간이나 자원을 공유할 수 있다. 스레드는 스레드 ID, 프로그램 카운터, 레지스터 집합, 그리고 스택으로 구성된다. 같은 프로세스에 속한 다른 스레드와 코드, 데이터 섹션, 그리고 열린 파일이나 신호와 같은 운영체제 자원들을 공유한다. 하나의 프로세스를 다수의 실행 단위로 구분하여 자원을 공유하고 자원의 생성과 관리의 중복성을 최소화하여 수행 능력을 향상시키는 것을 멀티스레딩이라고 한다. 이 경우 각각의 스레드는 독립적인 작업을 수행해야 하기 때문에 각자의 스택과 PC 레지스터 값을 갖고 있다

멀티스레드 vs 멀티 프로세스

멀티스레드는 멀티프로세스 보다 적은 메모리 공간을 차지하고 문맥전환이 빠르다는 장점이 있지만 오류로 인해 하나의 스레드가 종료되면 전체 스레드가 종료될수도 있지만, 멀티 프로세스는 다른 프로세스에 영향을 끼치지않는다. 하지만 많은 메모리와 CPU시간을 차지한다.그래서 적합한 방식을 선택해야한다.

스케줄러

프로세스를 스케줄링하기 위한 Queue 에는 세 가지 종류가 존재한다.

  • Job Queue : 현재 시스템 내에 있는 모든 프로세스의 집합
  • Ready Queue : 현재 메모리 내에 있으면서 CPU 를 잡아서 실행되기를 기다리는 프로세스의 집합
  • Device Queue : Device I/O 작업을 대기하고 있는 프로세스의 집합

각각의 Queue 에 프로세스들을 넣고 빼주는 스케줄러에도 크게 세 가지 종류가 존재한다.

장기스케줄러(Long-term scheduler or job scheduler)

메모리는 한정되어 있는데 많은 프로세스들이 한꺼번에 메모리에 올라올 경우, 대용량 메모리(일반적으로 디스크)에 임시로 저장된다. 이 pool 에 저장되어 있는 프로세스 중 어떤 프로세스에 메모리를 할당하여 ready queue 로 보낼지 결정하는 역할을 한다.

  • 메모리와 디스크 사이의 스케줄링을 담당.
  • 프로세스에 memory(및 각종 리소스)를 할당(admit)
  • degree of Multiprogramming 제어(실행중인 프로세스의 수 제어)
  • 프로세스의 상태new -> ready(in memory)

cf) 메모리에 프로그램이 너무 많이 올라가도, 너무 적게 올라가도 성능이 좋지 않은 것이다. 참고로 time sharing system 에서는 장기 스케줄러가 없다. 그냥 곧바로 메모리에 올라가 ready 상태가 된다.

단기스케줄러(Short-term scheduler or CPU scheduler)

  • CPU 와 메모리 사이의 스케줄링을 담당.
  • Ready Queue 에 존재하는 프로세스 중 어떤 프로세스를 running 시킬지 결정.
  • 프로세스에 CPU 를 할당(scheduler dispatch)
  • 프로세스의 상태ready -> running -> waiting -> ready

중기스케줄러(Medium-term scheduler or Swapper)

  • 여유 공간 마련을 위해 프로세스를 통째로 메모리에서 디스크로 쫓아냄 (swapping)
  • 프로세스에게서 memory 를 deallocate
  • degree of Multiprogramming 제어
  • 현 시스템에서 메모리에 너무 많은 프로그램이 동시에 올라가는 것을 조절하는 스케줄러.
  • 프로세스의 상태ready -> suspended

Process state - suspended

Suspended(stopped) : 외부적인 이유로 프로세스의 수행이 정지된 상태로 메모리에서 내려간 상태를 의미한다. 프로세스 전부 디스크로 swap out 된다. blocked 상태는 다른 I/O 작업을 기다리는 상태이기 때문에 스스로 ready state 로 돌아갈 수 있지만 이 상태는 외부적인 이유로 suspending 되었기 때문에 스스로 돌아갈 수 없다.

뒤로/위로


CPU 스케줄러

스케줄링 대상은 Ready Queue 에 있는 프로세스들이다.

FCFS(First Come First Served)

특징

  • 먼저 온 고객을 먼저 서비스해주는 방식, 즉 먼저 온 순서대로 처리.
  • 비선점형(Non-Preemptive) 스케줄링일단 CPU 를 잡으면 CPU burst 가 완료될 때까지 CPU 를 반환하지 않는다. 할당되었던 CPU 가 반환될 때만 스케줄링이 이루어진다.

문제점

  • convoy effect소요시간이 긴 프로세스가 먼저 도달하여 효율성을 낮추는 현상이 발생한다.

SJF(Shortest - Job - First)

특징

  • 다른 프로세스가 먼저 도착했어도 CPU burst time 이 짧은 프로세스에게 선 할당
  • 비선점형(Non-Preemptive) 스케줄링

문제점

  • starvation효율성을 추구하는게 가장 중요하지만 특정 프로세스가 지나치게 차별받으면 안되는 것이다. 이 스케줄링은 극단적으로 CPU 사용이 짧은 job 을 선호한다. 그래서 사용 시간이 긴 프로세스는 거의 영원히 CPU 를 할당받을 수 없다.

SRTF(Shortest Remaining Time First)

특징

  • 새로운 프로세스가 도착할 때마다 새로운 스케줄링이 이루어진다.
  • 선점형 (Preemptive) 스케줄링현재 수행중인 프로세스의 남은 burst time 보다 더 짧은 CPU burst time 을 가지는 새로운 프로세스가 도착하면 CPU 를 뺏긴다.

문제점

  • starvation
  • 새로운 프로세스가 도달할 때마다 스케줄링을 다시하기 때문에 CPU burst time(CPU 사용시간)을 측정할 수가 없다.

Priority Scheduling

특징

  • 우선순위가 가장 높은 프로세스에게 CPU 를 할당하는 스케줄링이다. 우선순위란 정수로 표현하게 되고 작은 숫자가 우선순위가 높다.
  • 선점형 스케줄링(Preemptive) 방식더 높은 우선순위의 프로세스가 도착하면 실행중인 프로세스를 멈추고 CPU 를 선점한다.
  • 비선점형 스케줄링(Non-Preemptive) 방식더 높은 우선순위의 프로세스가 도착하면 Ready Queue 의 Head 에 넣는다.

문제점

  • starvation
  • 무기한 봉쇄(Indefinite blocking)실행 준비는 되어있으나 CPU 를 사용못하는 프로세스를 CPU 가 무기한 대기하는 상태

해결책

  • aging아무리 우선순위가 낮은 프로세스라도 오래 기다리면 우선순위를 높여주자.

Round Robin

특징

  • 현대적인 CPU 스케줄링
  • 각 프로세스는 동일한 크기의 할당 시간(time quantum)을 갖게 된다.
  • 할당 시간이 지나면 프로세스는 선점당하고 ready queue 의 제일 뒤에 가서 다시 줄을 선다.
  • RR은 CPU 사용시간이 랜덤한 프로세스들이 섞여있을 경우에 효율적
  • RR이 가능한 이유는 프로세스의 context 를 save 할 수 있기 때문이다.

장점

  • Response time이 빨라진다.n 개의 프로세스가 ready queue 에 있고 할당시간이 q(time quantum)인 경우 각 프로세스는 q 단위로 CPU 시간의 1/n 을 얻는다. 즉, 어떤 프로세스도 (n-1)q time unit 이상 기다리지 않는다.
  • 프로세스가 기다리는 시간이 CPU 를 사용할 만큼 증가한다.공정한 스케줄링이라고 할 수 있다.

주의할 점

설정한 time quantum이 너무 커지면 FCFS와 같아진다. 또 너무 작아지면 스케줄링 알고리즘의 목적에는 이상적이지만 잦은 context switch 로 overhead 가 발생한다. 그렇기 때문에 적당한 time quantuy

profile
iOS 개발자 꿈나무

0개의 댓글