df['Real-Sale'] = A if 1 is 0 else B
df['Ship Mode'].value_counts()
df=pd.DataFrame(df.groupby('State')['Profit'].sum().sort_values(ascending=False)).reset_index()
df_merge = pd.merge(df_profit_sum, df_realSale_sum, how='left', on='State')
df_Sale = pd.DataFrame({'Sub-Category':list(df.groupby('Sub-Category')['Real-Sale'].sum().index),
"Real-Sales":list(df.groupby('Sub-Category')['Real-Sale'].sum())})
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use(['dark_background'])
plt.plot(df_State_Sale_Profit['State'],df_State_Sale_Profit['Profit'], label='Profit')
plt.gcf().set_size_inches(25,8)
plt.plot(df_State_Sale_Profit['State'],df_State_Sale_Profit['Real-Sale'], label='Sale')
plt.gcf().set_size_inches(25,8)
plt.xticks(rotation=45)
plt.legend()
import matplotlib.pyplot as plt
import seaborn as sns
li_order = list(df_merge.sort_values(by=['Profit'], ascending = False)['Sub-Category'])
custom_palette = sns.color_palette("Paired")
sns.set(style="darkgrid")
plt.figure(figsize=(30, 15))
ax = plt.gca()
plt.subplot(3, 1, 1)
sns.barplot(x='Sub-Category', y='Profit', data=df_merge, palette=custom_palette, order=li_order)
plt.ylabel('Profit')
plt.subplot(3, 1, 2)
sns.barplot(x='Sub-Category', y='count', data=df_merge,palette=custom_palette,order=li_order)
plt.ylabel('Count')
plt.subplot(3, 1, 3)
sns.barplot(x='Sub-Category', y='Real-Sales', data=df_merge,palette=custom_palette,order=li_order)
plt.xlabel('Sub Categories')
plt.ylabel('Sales')
plt.show()
li_cate = []
for c in li_sub:
li_cate.append(str(df[df['Sub-Category']==c]['Category'].unique()))
li_cate
["['Technology']",
"['Technology']",
"['Technology']",
"['Office Supplies']",
"['Office Supplies']",
"['Furniture']",
"['Office Supplies']",
"['Office Supplies']",
"['Furniture']"]