[ Algorithm ] 01. Getting Started

38A·2023년 4월 14일
1

알고리즘 분석

목록 보기
1/14
post-thumbnail
post-custom-banner

Insertion sort

Design paradigms

  • Insertion-sort uses incremental approach : subarray A[1 ... j-1], insert A[j]
    c.f) D and C approach ( merge sort )

Analysis

  • Correctness : Proving the correctness of the algorithm
  • Efficiency : Obtaining the time complexity of the algorithm

Correctness using Loop invariants

  • similar to mathematical induction
  • Loop invariant(불변) : At the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order ➡️ elements가 변하지 않음
  • Initialization : when j=2, A[1..j-1] consists of the single element A[1]. Trivially sorted
  • Maintenance(유지) : Informally, the body of outer ‘for’ loop works by moving A[j-1], A[j-2], A[j-3], and so on, by one position to the right until the proper(적절한) position for A[j] is found
  • Termination : The outer ‘for’ loop ends when j = n+1. Thus, A[1..n] consists of the elements originally in A[1..n] but in sorted order

Efficiency

  • Predicting the resourcestime, storage(not a big deal)
  • Random-access machine (RAM) model ( a generic one ) 일반적인 모델
    • Instructions are executed one after another ( no concurrent operations)
    • Each instruction takes a constant time
      - Arithmetic, Data movement, Control
    • Data types : integers, floating point
    • No memory hierarchy ( no cache or virtual memory )

  • Input size
    - n numbers
    - Graph algorithms : # of vertices and edges

  • Running time
    - The # of primitive(기본적인) operations or “steps” executed.
    - Steps are defined to be machine-independent
    - Each line of pseudocode requires a constant time
    but take different time

  • Time complexity Analysis
    - Worst-case (usually) : upper bound
    - Average-case (sometimes) : Need assumption of statistical distribution(통계적 분포) of inputs
    - Best-case (bogus) : 의미 없음, cheat

Analysis of insertion-sort

Analysis of merge-sort

use a recurrence equation

  • By the master theorem, T(n) = Θ(n lg n)
  • Compared to insertion sort Θ(n2n^2)
  • On small inputs, insertion sort may be faster
    But, for large enough inputs, merge sort will always be faster

using recursion tree

Exercise

1. Space complexity of fibo(n) (memoized DP)

➡️ Θ\Theta(n)
why? array size = Θ\Theta(n) AND stack(function call) : 최대 n번까지 call (Θ\Theta(n))

2. Another sort

Selection sort

T(n)=T(n1)+Θ(n)T(n) = T(n-1) + \Theta(n)
Θ(n2)\Theta(n^2) Best, Worst case 동일

Bubble sort

T(n)=T(n1)+Θ(n)T(n) = T(n-1) + Θ(n)
Time complexity : Θ(n2)\Theta(n^2) Best, Worst case 동일

Insertion sort

recurrence equation : T(n)=T(n1)+O(n)T(n) = T(n-1) + O(n)
Best : Θ(n)\Theta(n), Worst : Θ(n2)\Theta(n^2)

Quick sort

( partition : 리스트를 분할하고 pivot을 정하는 과정 )
Worst case
T(n)=T(n1)+T(0)+Θ(n)=T(n1)+Θ(n)T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)
➡️ Θ(n2)\Theta(n^2)
Best case (partition : pivot을 중앙값으로 선택)
T(n)=2T(n/2)+Θ(n)T(n) = 2T(n/2) + \Theta(n)
➡️ Θ(nlgn)\Theta(nlgn)

Time complexity : Θ(lgn)\Theta(lgn)
Insertion sort에서 검색을 이진검색으로 한다면, Θ(nlgn)\Theta(nlgn)?
➡️ No, 찾는 건 빠르지만 이후 복사해서 옮기는 작업을 할 수 없다.

HGU 전산전자공학부 용환기 교수님의 23-1 알고리듬 분석 수업을 듣고 작성한 포스트이며, 첨부한 모든 사진은 교수님 수업 PPT의 사진 원본에 필기를 한 수정본입니다.

profile
HGU - 개인 공부 기록용 블로그
post-custom-banner

0개의 댓글