: from labeled data
: from unlabeled data
➡️ Clustering ( 비슷한것 끼리 묶음 ), reproduction ( auto-encoder ), latent variable models ( hidden factor analysis )
: Small amount of labeled data + Large amount of unlabeled data
: State, Action, Reward
➡️ Learn actions to maximize reward
: 너무 복잡한 Model에 나타남 ➡️ 더 많은 Data로 충분한 학습 필요
: Training error decreases, but Test error increases
감사합니다. 이런 정보를 나눠주셔서 좋아요.