Neural Network Basics

38A·2023년 8월 15일
0

ML Camp

목록 보기
2/4
post-thumbnail

Neural Network

➡️ 입력정보를 merge해서 high-level information로 바꾸는 역할

  • NN이 하는 일
    • Learn mappings
      • vector : 길이가 고정되어 있음
      • sequence : 길이가 변할 수 있음
    • Learn probability distribution

Perceptron Neuron

Forward Propagation

➡️ net value : activation function을 통과시키기 전 값

Single-layer Perceptron

: input layer 1개, output layer 1개

  • Given
    • Network structure and initial weights (random values)
    • A set of training samples
    • Labels (desired output) for each training sample

Gradient Descent

Learning Rate

➡️ 수렴을 결정하는데 중요한 역할!!

Training Algorithm


Multi-layer Perceptron

Limitation of Single-layer perception : XOR
➡️ Classification using multiple lines


Activation Functions

A.k.a. Non-linearity functions

Why use?

  • Non-linearity
  • Restrict outputs in a specific range
  • Measurement ➡️ probability or decision

Functions

➡️ 확률로

Where?


Loss Function ( Error Criteria )

Back-propagation

Gradient and Jacobian

➡️ scalar값을 vector로 미분➡️ vector값을 vector로 미분

Chain Rule

벡터끼리의 chain rule은 matrix * vector로 나타냄
➡️ 출력 gradient * jacobian matrix = 앞쪽(input쪽) gradient

Back-propagation on Neural Nets

Back-propagation on MLP

MLP - Training of 2nd Layer

Gradient for weight update

Gradient for back-propagation

Gradients

MLP - Training of 1st Layer

➡️ weight에 대한 gradient만 계산

Gradient for weight update

profile
HGU - 개인 공부 기록용 블로그

0개의 댓글