Spatial Transformer Networks Tutorial

38Aยท2023๋…„ 7์›” 29์ผ
0

PyTorch ์Šคํ„ฐ๋””

๋ชฉ๋ก ๋ณด๊ธฐ
11/11
post-thumbnail

What is STN?

: ์ด๋ฏธ์ง€์˜ ๊ณต๊ฐ„์  ๋ณ€ํ™˜์„ ํ•™์Šตํ•จ. ์ด๋ฏธ์ง€ ๋‚ด์— ์žˆ๋Š” ๊ฐ์ฒด์˜ ์œ„์น˜, ํฌ๊ธฐ, ํšŒ์ „ ๋“ฑ์„ ์กฐ์ •ํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜ ๋‹ค๋ฅธ ์‹œ๊ฐ์  ๋ณ€ํ™˜ ์ž‘์—…์— ํ™œ์šฉํ•˜๋Š” ๊ธฐ์ˆ 
cf. CNN์€ scale, rotation์— ์•ฝํ•จ

  • STN ๊ตฌ์„ฑ
    • Localization Network
      • Input feature map U ์— ์ ์šฉํ•  transform์˜ parameter matrix โ€œฮธโ€ ๋ฅผ ์ถ”์ •ํ•จ
    • Grid Generator
      • Feature map V์—์„œ ๊ฐ ํ”ฝ์…€ (xi, yi)๋Š” sampling grid G์— ์กด์žฌํ•œ๋‹ค.
        ์ด๋ฅผ Transform Tฮธ (G)๋กœ ๋ณ€ํ™˜ํ•˜๋ฉด U์˜ sampling grid๊ฐ€ ๋œ๋‹ค.
    • Sampler
      • Sampling grid Tฮธ(G)๋ฅผ input Feature map U์— ์ ์šฉํ•ด ๋ณ€ํ™˜๋œ V๋ฅผ ์–ป๊ฒŒ ๋œ๋‹ค.

Code

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

        # Spatial transformer localization-network
        self.localization = nn.Sequential(
            nn.Conv2d(1, 8, kernel_size=7),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True),
            nn.Conv2d(8, 10, kernel_size=5),
            nn.MaxPool2d(2, stride=2),
            nn.ReLU(True)
        )

        # Regressor for the 3 * 2 affine matrix
        self.fc_loc = nn.Sequential(
            nn.Linear(10 * 3 * 3, 32),
            nn.ReLU(True),
            nn.Linear(32, 3 * 2)
        )

        # Initialize the weights/bias with identity transformation
        self.fc_loc[2].weight.data.zero_()
        self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

    # Spatial transformer network forward function
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        return x

Theta๋Š” affine ๋ณ€ํ™˜์„ ์œ„ํ•œ paramete์ด๋‹ค.์œ„์—์„œ ๊ตฌํ•œ parameter๋ฅผ ๋‘ ํ•จ์ˆ˜์— ํ†ต๊ณผ์‹œํ‚ค๋ฉด ์ตœ์ข… ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

    def forward(self, x):
        # transform the input
        x = self.stn(x)

        # Perform the usual forward pass
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


model = Net().to(device)

Result

def convert_image_np(inp):
    """Convert a Tensor to numpy image."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    return inp

# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.


def visualize_stn():
    with torch.no_grad():
        # Get a batch of training data
        data = next(iter(test_loader))[0].to(device)

        input_tensor = data.cpu()
        transformed_input_tensor = model.stn(data).cpu()

        in_grid = convert_image_np(
            torchvision.utils.make_grid(input_tensor))

        out_grid = convert_image_np(
            torchvision.utils.make_grid(transformed_input_tensor))

        # Plot the results side-by-side
        f, axarr = plt.subplots(1, 2)
        axarr[0].imshow(in_grid)
        axarr[0].set_title('Dataset Images')

        axarr[1].imshow(out_grid)
        axarr[1].set_title('Transformed Images')

for epoch in range(1, 20 + 1):
    train(epoch)
    test()

# Visualize the STN transformation on some input batch
visualize_stn()

plt.ioff()
plt.show()

์ถœ์ฒ˜ : PyTorch Tutorials https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html

profile
HGU - ๊ฐœ์ธ ๊ณต๋ถ€ ๊ธฐ๋ก์šฉ ๋ธ”๋กœ๊ทธ

0๊ฐœ์˜ ๋Œ“๊ธ€

๊ด€๋ จ ์ฑ„์šฉ ์ •๋ณด

Powered by GraphCDN, the GraphQL CDN