# Sample sizes
U.n = nrow(data)
Ip.n = sum(data$st_iptw)
Mw.n = sum(data$mw)
# Unadjusted
U.nCases <- c(nTotal = tapply(data[,1], data[,'Tr'], FUN = length),
nCases = sum(data[,'Y']),
nCases = tapply(data[,'Y'], data[,'Tr'], FUN = sum))
formOut <- as.formula(sprintf(" ~ %s", 'Y'))
formBy <- as.formula(sprintf(" ~ %s", 'Tr'))
# IPTW
Ip.nCases <- c(svyby(~I(Tr %in% c(0,1,2)), formBy, iptwData, svytotal)[,3],
as.numeric(svytotal(formOut, design = iptwData)),
svyby(formOut, by = ~ Tr, design = iptwData, FUN = svytotal)[,'Y'])
names(Ip.nCases) <- names(U.nCases)
# MW
Mw.nCases <- c(svyby(~I(Tr %in% c(0,1,2)), formBy, mwData, svytotal)[,3],
as.numeric(svytotal(formOut, design = mwData)),
svyby(formOut, by = ~ Tr, design = mwData, FUN = svytotal)[,'Y'])
names(Mw.nCases) <- names(U.nCases)
U = U.nCases
Ip = Ip.nCases
Mw = Mw.nCases
# Unadjusted
## SMD of X1
means <- tapply(data[['X1']], data[['Tr']], mean, na.rm = TRUE)
## Check Binary variables
if ('X1' %in% c('X4','X5','X10')) {
vars <- means * (1 - means)
} else {
vars <- tapply(data[['X1']], data[['Tr']], var, na.rm = TRUE)
}
## Pairwise differences, variance
meanDiffs <- outer(X = means, Y = means, FUN = "-")
varMeans <- outer(X = vars, Y = vars, FUN = "+") / 2
## Standardized mean differences
out <- meanDiffs / sqrt(varMeans)
## Absolute standardized mean differences
abs(out[lower.tri(out)])
# matching weight or IPTW
## SMD of X4
varFormula <- as.formula(paste("~", 'X4'))
groupFormula <- as.formula(paste("~", 'Tr'))
means <- svyby(formula = varFormula, by = groupFormula,
FUN = svymean, design = mwData, na.rm = TRUE)[,2]
if ('X4' %in% c('X4','X5','X10')) {
vars <- means * (1 - means)
} else {
vars <- svyby(formula = varFormula, by = groupFormula,
FUN = svyvar, design = mwData, na.rm = TRUE)[,2]
}
## Pairwise differences, variance
meanDiffs <- outer(X = means, Y = means, FUN = "-")
varMeans <- outer(X = vars, Y = vars, FUN = "+") / 2
## Standardized mean differences
out <- meanDiffs / sqrt(varMeans)
## Absolute standardized mean differences
abs(out[lower.tri(out)])
참값 의 추정량을 이라고 할 때, 편향(bias)은 다음과 같다.
참고