TensorVMSplit(
(density_plane): ParameterList(
(0): Parameter containing: [torch.float32 of size 1x16x100x100 (GPU 0)]
(1): Parameter containing: [torch.float32 of size 1x16x100x100 (GPU 0)]
(2): Parameter containing: [torch.float32 of size 1x16x100x100 (GPU 0)]
)
(density_line): ParameterList(
(0): Parameter containing: [torch.float32 of size 1x16x100x1 (GPU 0)]
(1): Parameter containing: [torch.float32 of size 1x16x100x1 (GPU 0)]
(2): Parameter containing: [torch.float32 of size 1x16x100x1 (GPU 0)]
)
(app_plane): ParameterList(
(0): Parameter containing: [torch.float32 of size 1x48x100x100 (GPU 0)]
(1): Parameter containing: [torch.float32 of size 1x48x100x100 (GPU 0)]
(2): Parameter containing: [torch.float32 of size 1x48x100x100 (GPU 0)]
)
(app_line): ParameterList(
(0): Parameter containing: [torch.float32 of size 1x48x100x1 (GPU 0)]
(1): Parameter containing: [torch.float32 of size 1x48x100x1 (GPU 0)]
(2): Parameter containing: [torch.float32 of size 1x48x100x1 (GPU 0)]
)
(basis_mat): Linear(in_features=144, out_features=27, bias=False)
(renderModule): MLPRender_Fea(
(mlp): Sequential(
(0): Linear(in_features=150, out_features=128, bias=True)
(1): ReLU(inplace=True)
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU(inplace=True)
(4): Linear(in_features=128, out_features=3, bias=True)
)
)
)
renderModule에서 nn.Linear의 첫번쨰 intput 같은 경우에는,
2 viewpe 3 +
2 feape P(=27) +
3 + P(=27)
의 input channel로 nn.Linear를 만든다.