Expectation, Variance example

d4r6j·2023년 11월 23일
0
post-thumbnail

Reference

Problem

  • Random Variable X,YX, Y 의 joint probability density function

    pXY(x,y)={8xy,0<x1,  0yx0,otherp_{XY}(x, y) = \left\{ \begin{array}{cc} \begin{aligned} 8xy, \quad\quad &0 < x \leq 1, \; 0 \leq y \leq x \\ \\ 0, \quad\quad &{\rm other} \end{aligned} \end{array} \right.

    일 때,

  • Area of joint probability density function.

1. Expectation of X

E[X]=xpX(x)dx\mathbb{E}[X] = \int^{\infty}_{\infty}xp_X(x)dx

를 적용하면

E[X]=xpXY(x,y)dydx=010xx(8xy)dydx=01[4x2y2]0xdx=014x4dx=45\begin{aligned} \mathbb{E}[X] &= \int^{\infty}_{-\infty}\int^{\infty}_{-\infty} xp_{XY}(x, y)dydx \\ &= \int^1_0 \int^{x}_0 x(8xy)dydx \\ &= \int^1_0[4x^2y^2]^{x}_{0}dx \\ &= \int^1_0 4x^4dx = \frac{4}{5} \end{aligned}

2. Expectation of Y

E[Y]=ypXY(x,y)dydx=010xy(8xy)dydx=01[83xy3]0xdx=0183x4dx=815\begin{aligned} \mathbb{E}[Y] &= \int^{\infty}_{\infty}\int^{\infty}_{\infty}yp_{XY}(x,y)dydx \\ &= \int^1_0\int^x_0 y(8xy)dydx \\ &= \int^1_0\left[ \frac{8}{3}xy^3 \right]^x_0dx \\ &= \int^1_0\frac{8}{3}x^4dx = \frac{8}{15} \end{aligned}

3. Expectation of X^2

E[X2]=x2pXY(x,y)dydx=x2(8xy)dydx=01[4x3y2]0xdx=014x5dx=23\begin{aligned} \mathbb{E}[X^2] &= \int^{\infty}_{-\infty}\int^{\infty}_{-\infty} x^2p_{XY}(x, y)dydx \\ &= \int^{\infty}_{-\infty}\int^{\infty}_{-\infty}x^2(8xy)dydx \\ &= \int^{1}_{0}[4x^3y^2]^{x}_{0}dx \\ &= \int^{1}_{0}4x^5dx = \frac{2}{3} \end{aligned}

4. Variance of X

Var(X)=E[(XE[X])2]=(xE[X])2pX(x)dx=(x22xE[X]+E[X]2)pX(x)dx=x2pX(x)dx2xE[X]pX(x)dx+E[X]2pX(x)dx=E[X2]2E[X]E[X]+E[X]21=E[X2](E[X])2=23(45)2=275\begin{aligned} Var(X) &= \mathbb{E}[(X-\mathbb{E}[X])^2] \\ &= \int^{\infty}_{-\infty}(x-\mathbb{E}[X])^2p_{X}(x)dx \\ &= \int^{\infty}_{-\infty}(x^2 - 2x\mathbb{E}[X] + \mathbb{E}[X]^2)p_{X}(x)dx \\ &= \int^{\infty}_{-\infty}x^2p_{X}(x)dx - \int^{\infty}_{\infty}2x\mathbb{E}[X]p_{X}(x)dx + \int^{\infty}_{-\infty}\mathbb{E}[X]^2p_{X}(x)dx \\ &= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2 \cdot 1 \\ &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \\ &= \frac{2}{3} - \left( \frac{4}{5} \right)^2 = \frac{2}{75} \end{aligned}

5. Correlation of X, Y

Cor(X,Y)=E[XY]=xypXY(x,y)dydx=010xxy(8xy)dydx=01[83x2y3]0xdx=0183x5dx=49\begin{aligned} Cor(X,Y) &= \mathbb{E}[XY] \\ &= \int^{\infty}_{-\infty}\int^{\infty}_{-\infty}xyp_{XY}(x, y)dydx \\ &= \int^1_0\int^{x}_0xy(8xy)dydx \\ &= \int^{1}_{0}\left[\frac{8}{3}x^2y^3\right]^{x}_{0}dx \\ &= \int^{1}_{0}\frac{8}{3}x^5dx = \frac{4}{9} \end{aligned}

6. Covariance of X, Y

XX 의 standard deviation σX=Var(X)\sigma_X = \sqrt{Var(X)}

Cov(X,Y)=E[(XE[X])(YE[Y])]=(xE[X])(yE[Y])pXY(x,y)dydx=(xyE[X]yxE[Y]+E[X]E[Y])pXY(x,y)dydx=xypXY(x,y)dydxE[X]ypY(y)dyE[Y]xpX(x)dx+E[X]E[Y]=E[XY]E[X]E[Y]=4945(815)=4225\begin{aligned} Cov(X,Y) &= \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\ &= \int^{\infty}_{-\infty} \int^{\infty}_{-\infty}(x-\mathbb{E}[X])(y-\mathbb{E}[Y])p_{XY}(x,y)dydx \\ &= \int^{\infty}_{-\infty}\int^{\infty}_{-\infty}(xy-\mathbb{E}[X]y - x\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y])p_{XY}(x,y)dydx \\ &= \int^{\infty}_{-\infty}\int^{\infty}_{-\infty}xyp_{XY}(x,y)dydx - \mathbb{E}[X]\int^{\infty}_{-\infty}yp_{Y}(y)dy - \mathbb{E}[Y]\int^{\infty}_{-\infty}xp_{X}(x)dx + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \\ &= \frac{4}{9} - \frac{4}{5}\left(\frac{8}{15}\right) = \frac{4}{225} \end{aligned}

7. Conditional Expectation

  • YY of conditional probability density function

    pX(x)=0x8xydy=8x0xydy=8x[12y2]0x=4x3p_{X}(x) = \int^{x}_{0}8xydy =8x\int^{x}_{0}ydy = 8x\left[\frac{1}{2}y^2 \right]^{x}_{0} = 4x^3
    pYX(yx)=pXY(x,y)pX(x)={2yx2,0yx,    0<x10,otherp_{Y|X}(y|x) = \frac{p_{XY}(x,y)}{p_{X}(x)} = \left\{ \begin{array}{cc} \begin{aligned} \frac{2y}{x^2}, \quad\quad &0 \leq y \leq x, \;\; &0 < x \leq 1 \\ \\ 0, \quad\quad &{\rm other} \end{aligned} \end{array} \right.
  • XX 의 conditional expectation when given Y=yY=y,

    E[XY=y]=xpxy(xy)dx\mathbb{E}[X|Y=y] = \int^{\infty}_{\infty}xp_{x|y}(x|y)dx
  • Random Variable X=xX=xYY 의 conditional expectation.

    E[YX=x]=ypYX(yx)dy=0xy2yx2dy=[23x3]0x=23x,0<x1\begin{aligned} \mathbb{E}[Y|X=x] &= \int^{\infin}_{-\infin}yp_{Y|X}(y|x)dy \\ &= \int^{x}_{0}y\frac{2y}{x^2}dy =\left[ \frac{2}{3}x^3\right]^x_0 \\ &= \frac{2}{3}x, \quad 0<x \leq 1 \end{aligned}
  • E[YX=x]\mathbb{E}[Y|X=x] 는 실수 xx 의 함수로서, 실수 함수

  • Reference (Continuous random variable)
    https://online.stat.psu.edu/stat414/lesson/20/20.2

0개의 댓글