[1] The Binomial Model (The One Period Model)

정창현·2023년 9월 25일

Financial Mathematics

목록 보기
1/5

The one-period model of the binomial model (-> simplist "toy" model)

(Notatioin)

  • ZZ is uu with probability pup_u and dd with probability pdp_d be a random variable such that pu+pd=1p_u+p_d=1.

  • Bt=B_t = the price of a bond at time t
    Then, B0=1B_0=1 and B1=1+RB_1 = 1+R

  • St=S_t = the price of a stock at time t
    Then, S0=sS_0 = s and S1={su,  with  pusd,  with  pdS_1 = \begin{cases} su,\;with\;p_u\\ sd,\;with\;p_d \end{cases}



(1) Portfolio

A vector h=(x,y)h=(x,y) is portfolio such that xx is the value of bonds and yy is the number of stocks.

(Assumption)

  • h=(x,y)R2h = (x, y) \in \mathbb{R}^2 is allowed : dept, fraction, \cdots
  • selling price = buying price
  • no transaction cost


(2) Value process VthV_t^h

It means the total asset price of hh at time tt
Let V0h=x+ysV_0^h=x+ys, then
V1h={x(1+R)+ysu,  with  pux(1+R)+ysd,  with  pdV_1^h=\begin{cases} x(1+R)+ysu,\; with \;p_u \\ x(1+R)+ysd,\;with\;p_d\end {cases}


(3) Arbitrage portfolio

A portfolio hh is said to be an arbitrage portfolio if

  • today : V0h=0V_0^h=0
  • tomorrow : P(V1h0)=1P(V_1^h \geq 0) = 1 & P(V1h>0)>0P(V_1^h>0)>0

It means hh cannot lose but gain.
(P(V1h=0)=1P(V_1^h=0)=1 is impossible.)

In the real market, It is almost impossible for arbitrage portfolio to exist. We call arbitrage free when there is no arbitrage portfolio.

(Proposition)

An one-period model is arbitrage free \Leftrightarrow d<1+R<ud<1+R<u

proof)
(\rightarrow) Suppose d1+Rd\geq 1+R or u1+Ru \leq 1+R.
Then we can take a arbitrage portfolio. But It is a contradiction.
(\leftarrow) Suppose that there is a arbitrage porfolio h=(x,y)h=(x,y).
But It does not satisfy the condition of arbitrage porfolio.


(4) Martingale measure

The martingale measure is the probability such that these conditions.

  • qu+qd=1q_u + q_d =1
  • EQ[S1]=(su)qu+(sd)qd=s(1+R)E^Q[S_1] = (su)q_u + (sd)q_d = s(1+R)

So, maringale measure Q=(qu,qd)=((1+R)dud,u(1+R)ud)Q=(q_u, q_d) = (\frac{(1+R)-d}{u-d}, \frac{u-(1+R)}{u-d})


(5) Contigent claim (Financial derivative)

Φ:RR\Phi : \mathbb{R} \to \mathbb{R} is a contract function from xx to Φ(x)\Phi(x).
It means the value of the contigent claim depending on the stock price xx.

For example, the value of the European call option is Φ(x)=(xK)+\Phi(x) = (x-K)_+.

For hedging risk, we always assume that sd<K<susd<K<su.

(Notation)

Π(t;X)\Pi(t;X) is the price of XX at time tt such that X=Φ(x)X = \Phi(x).

In the case of European call option, Π(1;X)=Φ(S1)=(S1K)+\Pi(1;X)=\Phi(S_1)=(S_1-K)_+


(6) Hedging portfolio

A contigent claim XX is called reachable if there exists a portfolio h=(x,y)h=(x,y) such that V1h=XV_1^h=X. and such hh is called hedging portfolio(replicating portfolio). If all claims are reachable, the market is said to be complete.

We want to find hedging portfolio h=(x,y)h=(x,y) such that
Φ(S1)=V1h.\Phi(S_1)=V_1^h.

{Φ(su)=x(1+R)+ysuΦ(sd)=x(1+R)+ysd\begin {cases} \Phi(su)=x(1+R)+ysu \\ \Phi(sd)=x(1+R)+ysd\end {cases}

h=(x,y)=(11+RuΦ(sd)dΦ(su)ud,1sΦ(su)Φ(sd)ud)\therefore h=(x,y) = (\frac{1}{1+R}\frac{u\Phi(sd)-d\Phi(su)}{u-d}, \frac{1}{s}\frac{\Phi(su)-\Phi(sd)}{u-d})


(7) Risk neutral evaluation

Because Φ(S1)\Phi(S_1) is replicated by hedging portfolio h=(x,y)h=(x,y), It is reasonable to say that today's fair price of Φ(S1)\Phi(S_1) is eqaul to V0hV_0^h.

Π(0;X)=V0h=x+sy=11+RuΦ(sd)dΦ(su)ud+s1sΦ(su)Φ(sd)ud\Pi(0;X) = V_0^h = x+sy = \frac{1}{1+R}\frac{u\Phi(sd)-d\Phi(su)}{u-d} + s \frac{1}{s}\frac{\Phi(su)-\Phi(sd)}{u-d}

Π(0;X)=11+R{(1+R)dudΦ(su)+u(1+R)udΦ(sd)}\to \Pi(0;X)=\frac{1}{1+R}\{\frac{(1+R)-d}{u-d}\Phi(su)+ \frac{u-(1+R)}{u-d}\Phi(sd)\}

Π(0;X)=11+R{quΦ(su)+qdΦ(sd)}\to \Pi(0;X) = \frac{1}{1+R} \{q_u\Phi(su)+q_d\Phi(sd)\}

Π(0;X)=11+REQ[X]\to \Pi(0;X) = \frac{1}{1+R}E^Q[X]

It is surprising conclution. 😲

Π(t;X)={Φ(S1),  t=111+REQ[Φ(S1)],  t=0\Pi(t;X) = \begin {cases} \Phi(S_1), \; t=1 \\ \frac{1}{1+R}E^Q[\Phi(S_1)], \; t=0\end {cases}

The fair relates to martingale measure (qu,qd)(q_u, q_d), not to real probablility (pu,pd)(p_u, p_d).

profile
안녕하세요. 반갑습니다. 모켈레-음베음베

0개의 댓글