시간 복잡도를 표기하는 방법은 다음과 같다.
위 세 가지 표기법은 시간 복잡도를 각각 최악, 최선, 중간(평균)의 경우에 대하여 나타내는 방법이다. 이 중에서 Big-O 표기법이 가장 자주 사용된다.
Big-O 표기법은 입력값의 변화에 따라 연산을 실행할 때, 연산 횟수에 비해 시간이 얼마만큼 걸리는가?를 표기하는 방법이다.
빅오 표기법은 최악의 경우를 고려하므로, 프로그램이 실행되는 과정에서 소요되는 최악의 시간까지 고려할 수 있기 때문이다. "최소한 특정 시간 이상이 걸린다" 혹은 "이 정도 시간이 걸린다"를 고려하는 것보다 "이 정도 시간까지 걸릴 수 있다"를 고려해야 그에 맞는 대응이 가능하다.
O(1)는 constant complexity라고 하며, 입력값이 증가하더라도 시간이 늘어나지 않는다.
다시 말해 입력값의 크기와 관계없이, 즉시 출력값을 얻어낼 수 있다는 의미
O(n)은 linear complexity라고 부르며, 입력값이 증가함에 따라 시간 또한 같은 비율로 증가하는 것을 의미합니다.
예를 들어 입력값이 1일 때 1초의 시간이 걸리고, 입력값을 100배로 증가시켰을 때 1초의 100배인 100초가 걸리는 알고리즘을 구현했다면, 그 알고리즘은 O(n)의 시간 복잡도를 가진다고 할 수 있다.
O(log n)은 logarithmic complexity라고 부르며 Big-O표기법중 O(1) 다음으로 빠른 시간 복잡도를 가진다.
BST에선 원하는 값을 탐색할 때, 노드를 이동할 때마다 경우의 수가 절반으로 줄어드는데, BST의 값 탐색도 같은 로직으로 O(log n)의 시간 복잡도를 가진 알고리즘(탐색기법)이다.
O(n2)은 quadratic complexity라고 부르며, 입력값이 증가함에 따라 시간이 n의 제곱수의 비율로 증가하는 것을 의미한다.
예를 들어 입력값이 1일 경우 1초가 걸리던 알고리즘에 5라는 값을 주었더니 25초가 걸리게 된다면, 이 알고리즘의 시간 복잡도는 O(n2)라고 표현한다.
function O_quadratic_algorithm(n) {
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
// do something for 1 second
}
}
}
function another_O_quadratic_algorithm(n) {
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
for (let k = 0; k < n; k++) {
// do something for 1 second
}
}
}
}
O(2n)은 exponential complexity라고 부르며 Big-O 표기법 중 가장 느린 시간 복잡도를 가진다.
구현한 알고리즘의 시간 복잡도가 O(2n)이라면 다른 접근 방식을 고민해 보는 것이 좋다.
재귀로 구현하는 피보나치 수열은 O(2n)의 시간 복잡도를 가진 대표적인 알고리즘이다.
function fibonacci(n) {
if (n <= 1) {
return 1;
}
return fibonacci(n - 1) + fibonacci(n - 2);
}
대략적인 데이터 크기에 따른 시간 복잡도는 다음과 같다.